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Abstract. The authors study finite 2-groups with non-Dedekind non-metacyclic
norm N& of Abelian non-cyclic subgroups depending on the cyclicness or the non-
cyclicness of the center of a group G. The norm N& is defined as the intersection
of the normalizers of Abelian non-cyclic subgroups of G. It is found out that such
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1 Introduction

One of the main directions in group theory is the study of the impact of charac-
teristic subgroups on the structure of the whole group. Such characteristic subgroups
include different >-norms of a group. A Y-norm is the intersection of the normal-
izers of all subgroups of a system ¥ (assuming that the system ¥ is non-empty).
It is clear that when the Y-norm coincides with a group, then all subgroups of the
system > are normal in the last one.

For the first time, R. Baer [1] considered the ¥-norm as a proper subgroup of a
group in 1935 for the system of all subgroups of this group. He called it the norm
of a group and denoted by N(G). Narrowing the system of subgroups one can get
different ¥-norms which can be considered as generalizations of the norm N(G).
Recently the interest in studying the 3-norms does not decrease as evidenced by the
series of works [2-4,9,11].

If ¥ is the system of all Abelian non-cyclic subgroups, then such a -norm will
be called the norm of Abelian non-cyclic subgroups and denoted by N‘G4. Thus the
norm Né of Abelian non-cyclic subgroups of a group G is the intersection of the
normalizers of all Abelian non-cyclic subgroups of a group G, assuming that the
system of such subgroups is non-empty.

Here we improve and extend some earlier results [8].

2 Preliminary Results

In a group G which coincides with the norm Né all Abelian non-cyclic subgroups
(assuming the existence of at least one such a subgroup) are normal. Non-Abelian
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groups with this property were called H A-groups (H As-groups in the case of 2-
groups) [7].

Proposition 1. [7] A non-Hamiltonian H As-group does not contain an elementary
Abelian subgroup of order 8.

Proposition 2. [7] Finite non-Hamiltonian H As-groups are groups of the following
types:

1) G = ({a) x (b)) N (c), where |a| = 2", n > 1, |b] = || = 2, [a,b] = [a,c] = 1,
b, = a2

)

2) G = (a) % (b), where |a| = 2", |b| = 2™, n>2, m>1, [a,b] = a®"';

3) G = (H x (b))~ (c), where H = <h1,h2>, [ha| = [ho| = 4, h = h3, |b] = || =2,
[, ho] = hi, [H, (0)] = [H, {c)] = E, [b,c] = hi;

4) G = ({a) x (b)){c), where |a| = |b] = |c| =4, ¢ = a®V?, [c,b] = 2, [c,a] = a?;

5) G = ({a) x (0))(c)(d), where |a| = [b] = |c| = |d| = 4, ¢ = d&® = a®V?, [a,(] =

X
[d7 C] = 27 [b7 d] = b2 [C b] [d CL] - 02
6) G = H x {(c), where H is the quaternion group, |c| = 2", n > 2;
7) G =H x Q, where H and Q are the quaternion groups;

8) G = (H x (b)){c), where H = (hy,ha), |hi| = |ha| = |b] = |¢| =4, [h1,ho] = hi =
h%) [Hv <b>] = [H <C>] = E: C2 = bzh%: [bv C] = b2;'
(c

9) G = ((ha) x (e))(h1), where || = |ho| = 4, [, ho] = hi = h3, |c| = 2" > 2,
[C hl] = 2 B 5y

10) G = (H x (b)){c), where H = (hy,ha), |hi| = |ho| = 4, |b] = 2, || = 8,
[b7 C] = [h17h2] = h% = h%; = hy, [h2,C] =b;

11) G = (a)(b), where |a| =8, [b| =27 > 2, a* = 2", a"tba = b~ L.

It is clear that the subgroup Né is characteristic and contains the center Z(G)
of the group G.

To reduce the presentation, a finite 2-group with non-Dedekind non-metacyclic
norm Né of Abelian non-cyclic subgroups will be called a group of type « if the
center Z(@G) of the group G is non-cyclic, and a group of type ( if the center Z(Q)
of the group G is cyclic.

The following corollary immediately follows from Proposition 2.

Corollary 1. If G is a group of type o and G = Né, then Néx s a group of one of
the types (4)-(9) of Proposition 2. If G is a group of type § and G = Né, then Né
is a group of one of the types (1), (3), (10) of Proposition 2.

It turns out that there exist groups such that the center Z (Né‘) of the norm
N‘G4 of the group G is non-cyclic but the center Z(G) of the group G is cyclic. The
following example shows it.
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Example 1. G = ((b) N H) (y), where [b] = 4, H = (hy, ha), || = 4, [h1, ha] =
h% = h27 [b7 h2] = 17 y2 = h17 [yahQ] = b2h27 [yab] = h2-

In this group all Abelian non-cyclic subgroups are contained in the group (b) x H
and are normal in it. So it is easy to verify that N4 = (b) X\ H and Z(N§) =
(b*) x (h?) is non-cyclic. At the same time Z(G) = (h?) is cyclic.

Lemma 1. If Z is a central non-cyclic subgroup of a group G, then N—éx C N(G) in
the quotient-group G/Z = G, where N(G) is the norm of the group G.

Proof. 1t suffices to show that the group Né‘ normalizes every cyclic subgroup of
the group G = G/Z.

Let T € G. Then the full preimage of the subgroup (Z) in the group G is the
Abelian non-cyclic subgroup (z, Z). Therefore, N4 C Ng((z,Z)). In the quotient-
group G _

[N& € Ne((z,Z)) € Ng({@)],

thus N—‘G4 C N(G). O

Let’s denote the lower layer of a group G by w(G). It is the subgroup generated
by all elements of prime order of the group G.

Lemma 2. If the norm N‘G4 of Abelian non-cyclic subgroups of a finite 2-group G is
non-Dedekind non-metacyclic and its lower layer w(Né) is an elementary Abelian

subgroup of order 4, then Néx contains all involutions of the group G and w(Né) =
w(G).

Proof. Let a group GG and its norm Né‘ of Abelian non-cyclic subgroups satisfy the
conditions of the lemma. Then Néx is a group of one of types (4)-(10) of Propo-
sition 2. Since w(NZ) < N4 and the subgroup w(NZ) is characteristic in NZ,
w(NE) < G. Therefore w(N&)N Z(G) # E.

Let w(N&) = (a1) x (as), |a1| = |az| = 2, a1 € Z(G) for the definiteness. Suppose
that G contains an involution x ¢ N&. Then the subgroup (aj,z) is Abelian and
normal in the group Gi = (v) N&. Since [G1 : Cg, ((a1,2))] < 2, [y%,2] = 1
for an arbitrary element y € Né‘. If N‘G4 is a group of one of types (4)-(9) of
Proposition 2, then [(Né‘)z,(xﬂ = [w(Ng), (x)] = E. Therefore (z) < Gy as the
intersection of normal subgroups (a1, z) and (ag,x). Thus Gy = (z) x NZ is a non-
Hamiltonian H As-group which contains an elementary Abelian subgroup of order
8, which contradicts Proposition 1. So, in this case w(N&) = w(G).

Let NZ be a group of type (10) from Proposition 2. Then Z(N§) = (h%), where
hi € H, |hi| = 4 and h? = a1 € Z(G). By the proved above for the involution:

[(z) . N&) € {ar) = (h).

Therefore [x,b%] = [z,h1] = 1. If [z, he] = 1 then (z, ho) NG = (ha) < N§, which
is impossible. Thus, [z, ho] = hf and |zhg| = 2. Since zhy ¢ N&, [zho,b] € (h?),
[xhg,b2] = [xhg,hl] =1.

On the other hand, [xhg, h1] = [ha, h1] = h? # 1. The contradiction proves that
w(Ng) = w(G). O
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Corollary 2. If the norm Néx of Abelian non-cyclic subgroups of a finite 2-group G is
non-Dedekind non-metacyclic and has the non-cyclic center Z(Ng&), then w(N§) =
w(@).

Lemma 3. If the norm Né of Abelian non-cyclic subgroups of a finite 2-group G
is non-Dedekind, has the non-cyclic center and the non-central in G lower layer
w(NG), then G = C {y), where C = Cg(w(NE)), C <G, |y| >4, y* € C. In this
case every Abelian non-cyclic subgroup of a finite 2-group G is contained in C and
N4 =NgcCc.

Proof. By the condition of the lemma the norm Né is a group of one of the types
(4)-(9) of Proposition 2. In each of these cases w(N&) is an elementary Abelian
subgroup of order 4 and w(N&) ¢ Z(G) according to the condition of the lemma.

Let’s denote C' = Cg (w(N&)). Since w(N&) 9 G,C < G,[G:C] = 2. Thus
G = C (y), where y* € C.

Since w(NZ) C Z(N&), N4 C C and y ¢ N&. By Lemma 2 w(Ng) = w(G),
so |y| > 2. Let |y| = 4, then the subgroup (y)w(G) is a dihedral group of order
8. Since (y)w (G) = (y,b), we have |yb| = 2. But yb € w(G) and y € w(G) by
such conditions, which is impossible. Thus |y| > 4. Taking into account that every
Abelian non-cyclic subgroup contains w(Né‘), we conclude that it is contained in C.
Therefore Né = Né cC. O

Lemma 4. Let G be a group of type B and the center Z(Né) is cyclic and con-
tains an involution a. Then the element a is contained in every cyclic subgroup of
composite order of the group G.

Proof. Let z be an arbitrary element of the group G, |z| = 2%, k > 1. Let (z)N{a) =
Eand a € Z(NE), |a| = 2. Then [z,a] = 1 and (z,a) <Gy = (z) N§. Since (22)<G

and <3:2k71> AGy, we have 22" € Z(Gy).
If 227 ¢ NZ, then for an arbitrary element y € N& (y) x <3:2k71> 4Gy,

k—1
(fw) x (27" ) NG = (y) < NE.
Thus the norm Né is Dedekind, which is impossible. Then 227 € Né, 227 €
Z(N&), a € Z(N&) and Z(NE) is non-cyclic, which contradicts the condition. Thus,
(x) N {a) # FE and a € (z). O

3 Finite 2-groups with a non-cyclic center and a non-Dedekind
non-metacyclic norm of Abelian non-cyclic subgroups (groups
of type «)

The norm N(‘;4 of Abelian non-cyclic subgroups is closely related to the norm
N¢ of non-cyclic subgroups. The last one is the intersection of the normalizers of
all non-cyclic subgroups of a group G and was studied in [5] for the case of finite
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2-groups. If G = N, then all non-cyclic subgroups are normal in the group G. Such
groups were studied in [6] and were called H-groups.

In the general case Ng C Né. However, if every non-cyclic subgroup is covered
by Abelian non-cyclic subgroups, then Ng = Né. In particular, we obtain the
following.

Theorem 1. If G is a group of type o and does not contain the quaternion group,
then N4 = Ng.

Proof. Since the center of the group G is non-cyclic, w(G) = w(N&) by Corollary 2.
Taking into account that the group G does not contain the quaternion group and
has a non-cyclic center, every non-cyclic subgroup contains the lower layer w(G).
Therefore (z,w(G)) is an Abelian non-cyclic subgroup for any element  of an arbi-
trary non-cyclic subgroup. Thus, every non-cyclic subgroup is covered by Abelian
non-cyclic subgroups and Né = Ng. O

Lemma 5. Any group of type o of exponent 4 is an H Ay-group.

Proof. Let a group G satisfy the conditions of the lemma. Then w(N&) = w(G) by
Corollary 2 and w(G) is a central elementary Abelian group of order 4.

The quotient-group G = G/w(G) is a group of exponent 2. Thus G is Abelian
and G’ C w(G). Since every Abelian non-cyclic subgroup of a group G contains
w(@), every such subgroup is normal in G and G is an H A-group. O

Corollary 3. Let G be a group of type a. If the group G contains elements of order
4 which are not contained in the norm Né, then expG > 4.

Lemma 6. Let G be a group of type . If an element x € G\N‘é‘, |x| = 4 exists,
then the subgroup Gy = (x)N¢ is an H Ay-group.

Proof. Let x € G\N&, |z| = 4. By Corollary 2 w(N§) = w(G) C Z(G). Therefore
(z)w(G) < Gy = (x) N4 and

G C (2)w(G) N NE = w(G).

Since every Abelian non-cyclic subgroup of the group G contans w(G), it is normal
in Gy. Thus Gy is an H As-group. O

Let’s denote a subgroup which is generated by the elements of order not exceeding
2™ by wp,(G). In particular, wi(G) = w(G) is the lower layer of the group G.

Corollary 4. Let G be a group of type a. If the norm Né is a group of types (5),
(7), (8), (6) (n>2) and (9) (n > 2) of Proposition 2, then wa(NG) = wa(G) and
wg(Né) is a group of exponent 4.

Proof. Suppose that the conditions of the corollary are satisfied and an element
z € G\NZ, |z| = 4 exists. Then Gy = (z)N4 is an H As-group by Lemma 5. Taking
into account the structure of the norm N‘G4 and the description of H As-groups we
get a contradiction. Thus we(NG) = wa(G). O
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Lemma 7. If wg(Né‘) = wo(G) in a group G of type a, then the group G does not
contain a generalized quaternion group of order greater than 8. If in this case the
group G contains the quaternion group H, then H C Né‘. Moreover Ng = NNé.

Corollary 5. Let G be a group of type o and its norm Néx does not contain the
quaternion group. If wg(Né) = w9(Q), then the group G does not contain the
quaternion group and Né = Ng.

Theorem 2. G is a group of type « if and only if it is a group of one of the following
types:

1) G is a non-metacyclic non-Dedekind H As-group with a non-cyclic center, G =
Ng;

2) G = H - Q, where H 1is the quaternion group of order 8, Q is a generalized
quaternion group, H = (hy,hs), |h1| = |he| = 4, [h1,ha] = h? = k3, Q = (y, =),
|y| =2",n2>3, |l‘| =4, y2"*1 = l‘2, x_ly$ = y_l) HNQ=F, [QaH] - <l‘2,h%>,
NA = H x (y*" 7).

Proof. The sufficiency of the conditions of the theorem is easy to verify directly.
Let’s prove the necessity of the conditions of the theorem:.

Since the center Z(G) is non-cyclic, w(N&) C Z(G) and w(Ng) = w(G) by
Lemma 2. By the condition of the theorem and Corollary 1 the norm Né‘ is a group
of one of the types (4)-(9) of Proposition 2.

Let’s continue the proof of the theorem depending on the structure of the norm
Ng.

Lemma 8. Let G be a group of type o and let its norm N‘G4 be a group of one of
types (4), (5), (7), (8) and (9) (n = 2) of Proposition 2. Then G = N&.

Proof. Suppose that G # N‘G4. Let’s prove that G is a group of exponent 4. Let an
element = € G, |z| = 8, exist.

If in this case the norm Néx is a group of one of types (5), (7), (8) of Proposition 2,
then wy(N&) = wo(G) by Corollary 4 and 22 € NZ4.

Let the norm NZ be a group of one of types (4) or (9) (n = 2) of Proposition 2.
Suppose that 22 ¢ N&. Since (r)w(G) < Gy = () NG and

[(2), N&] € (@)w(G) N NG = w(@),

we have (22) <Gy, [(#2), N3] = E and 2? € Z(G1). But in this case w(G1) # w(Ng),
which is impossible by Lemma 2. Thus 22 € Né‘,

[(2),w(G)] € (@)w(G) N NG = (2*)w(G).

Let us consider the quotient-group G = G1/w(G). By the proved above G, C
(@). I G # F and T ¢ Z(G1), (T) < Gy, then [G1 : Cg ((T))] = 2. Thus NZ
contains an element 7 of order 2 which is permutable with T. Therefore (Z,7) is a
dihedral group of order 8 and |Zy| = 2. Since w(G) is a central non-cyclic subgroup,
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N4 < N(G) by Lemma 1. Therefore (zy) < G;. Thus Gy is Abelian, which is
impossible.

Therefore G_ll =FE, G) C w(Né) and G is an HAs-group which contains a
central cyclic subgroup of order 4, which contradicts the structure of the norm N‘G4.
Thus G is a group of exponent 4. G is an H Ay-group by Lemma, 5. O

Lemma 9. Let G be a group of type o and its norm N‘G4 s a direct or a semi-direct
product of a normal cyclic group of order greater than 4 and the quaternion group.
Then G = Né‘.

Proof. Let the norm N‘G4 satisfies the conditions of the lemma. It is a group of
type (6) or (9) (n > 2). Suppose that G # NZ&. Since the center of the group G
is non-cyclic, then w(N&) = w(G) by Lemma 2. Moreover, wy(N&) = w2(G) by
Corollary 4.

If the norm N is a group of type (6) (n > 2), then N4 = Ng by Lemma 7. By
Theorem 2 [5] G is an H As-group and it is a semi-direct product of a normal cyclic
subgroup of order greater than 4 and the quaternion group. Thus G = Né, which
is impossible.

Let the norm Né be a group of type (9) (n > 2). Then Né contains all quater-
nion groups by Lemma 7 and the non-cyclic norm Ng of a group G coincides with
the non-cyclic norm of the subgroup N4, Ng = Nya = (%) x H, |c*| > 4. By
Theorem 2 [5] G is an H Az-group and G = N‘G4, which is impossible. O

Lemma 10. Let G be a group of type o and let its norm Né be a group of the type
N‘G4 = H x (c), where H is the quaternion group, |c| = 4. Then either G = N‘G4, or
G is a group of type (2) of Theorem 2.

Proof. By Lemma 2 w(N&) = w(G). If N4 = ws(G), then Ng = Nya = N& by
Lemma 7. By Theorem 2 [5] G is an H As-group and G = N§.

Let assume that N4 # wa(G) and an element » € G\NZ, |z| = 4 exists. By
Lemma 6 G; = <x>Né4 is an H Ay-group of exponent 4. If [z, ¢] = 1, then G contains
a central cyclic subgroup (c) of order 4, which is impossible by Proposition 2, because
|WQ(G1)| = 64. Thus ¢ ¢ Z(G)

If (¢)<G and (c) is a non-central subgroup, then [G : C] = 2, where C' = C¢((c)).
Let’s show that under these conditions all elements of order greater than 4 are
permutable with the element c. Let y € G\NZ, |y| = 2%, s > 2. If (y) N NZ C w(G),
then

[(y), N&] € () (G) N NG = w(G)

and [(y?), N4] = E. But in this case w(G) # w(N&), which contradicts Lemma 2.
Therefore, (y) N N4 = (2.
Let y; = y2873, y? = ¢™h¥, where h € H. Let us consider Gy = <y1>N‘G4. Since

[(y1), N&] S (y1)w(G) N NG = (y1)w(G),
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we have (y?) <t Go. Thus either m = 0 (mod 2) and (k,2) = 1, or k = 0 (mod 2)
and (m,2) = 1.

In the first case y? = ¢®™ h*. (k,2) = 1. Let consider the quotient-group G =
G/w(G). By the proved above,

[(71), N&] € @) N NE = (73) = ().

Let hi be an element of the subgroup H which is not permutable with h. Then
[(h1), 7)) = @) = (ﬁkl>. If (1,2) = 1, then (7, h;1) is a dihedral group and
[y1h1| = 2. By Lemma 1 (§;h1) < G2 and therefore Go = N& x (y,h1). Hence
[1h1, h1] = [7;, h1] = 1, which is impossible. Thus (/,2) # 1 and [hy,7,] = 1. But
then [h1,y1] € w(NG), [h1,y3] = [h1, h] = 1, which contradicts the choice of h.

Thus y? = ¢™h?*1 where (m,2) = 1, and [y, c] = 1. Hence the elements of order
greater then 4 are contained in the centralizer C.

Let x ¢ C. Then |z| = 4. Taking into account [G : C| = 2, we conclude that
G = C(z), where 2° € w(G), [(z), N4] C w(G). By the proved above, the norm N&
contains all elements of order 4 of the centralizer C, i.e. Né =wq(C). IfexpC =4,
then N4 = C and G = N‘G4 -{x). By Lemma 6 G is an H Ay-group which does not
coincide with Né, which is impossible. Thus exp C > 4.

Since the norm NZ of the subgroup C' contains N4 and ¢ € Z(C'), the norm NZ
is a group of one of the types:

1) NA=(y)x H, |yl =2",n>3,¢y* =g

2) Né =(y)NH, [(y), H] = <y2"*1>7 ly[=2",n=>3, y2"*2 =c

By Lemma 9, N(’j4 = (. Let’s consider each of these cases separately.

(1) Let C = N4 = (y) x H, then G = ((y) x H){(z), 22 € C. Let’s consider the
quotient group G = G/w(G) = ({(y) x H)(Z). Since (y) = Z(C), the subgroup (y,T)
contains a cyclic subgroup of index 2. Therefore the following relations are possible
between T and .

If [7,7) = 1, then G’ C w(G) and G is an H Ay-group, which contradicts G # N&.
1

Ifz gz = @‘@27%2, n > 4, then turning to the preimages z~'yx = y~'cz, where
z € w(G) Therefore 27 2y2? = 271y lczx = ye2, which contradicts z2 € Z(G).

If a: ya; = g% ", where n > 4, then ly| > 16, 2~ lyz = ycz, where 2z € w(G),
and 27 1y?z = y2c2. Since c € (y), y?> = c and |y| = 8, which is impossible.

Thus G = H - Q is a group of the type (2) of Theorem 2, where one of the groups
H or @ is a generalized quaternion group of order greater than 8, and the other one
is the quaternion group, [H, Q] C w(G).

(2) Let C = N& = (y) N H, [(y), H] = (*" ), [yl =2, n >3, y*" " =c.

Let us consider the quotient-group

G =G/w(G) = () N H)(@),
where [H,(Z)] = E, [(7 > (T)] C (g, H). Let T-'yz = @O‘Eﬁ, where h € H. Then by

the condition [72,7] = 1, we have

T_2y_$2 _ (—ahﬁ)ahﬁ —a Eﬁ(a‘i'l)
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If 3=1 (mod 2), then o> =1 (mod 2" ') and a = +1+2" ' or a = +1 42" %¢.
It is easy to verify that in each case [hi, (ry)?] # 1 for the element hy € H which
is not permutable with h. On the other hand, [hy,z] € w(G), [h1,y] € w(G). Thus,
[h1,7y] € w(G) and [hy, (ry)?] = 1. We get a contradiction.

Thus 8 = 0 (mod 2) and () < G. Repeating the above proof we get that
T gz = y~1. Then G = (y)G1, where G; = N&(z) is an HAy-group, which is a
direct or a semi-direct product of two quaternion groups. Thus G = H - (@ is a group
of the type (2) of Theorem 2.

Suppose that (¢) 4 G. Hence [(c), G] C w(G).

Let x be an element of G, |z| > 8. If (z) N4 C w(G), then

[(x), NG] € (@)w(G) [\ NG = w(G

and [(#2), N4] = E. Hence G1 = (v?)N4 is an H As-group which has two central
cyclic subgroups (x) and (c) of order 4, which contradicts the description of H As-
groups. Thus, 22" = chB (where either « or 3 is not divisible by 2) and

[(z), N&] € (2" )w(G).

Since (22) <Gy, either @ = 0 (mod 2) and 3 =1 (mod 2), or &« = 1 (mod 2) and
B =0 (mod 2).

If @ =0 (mod 2) and 8 =1 (mod 2), then [(z), N4] C w(G) and [22, hi] = 1.
On the other hand, [22,hi] = [®*hP® hy] = [hP,h1] # 1. We get a contradiction.
Thus 22" = ¢®h??, where (o, 2) = 1. Hence [z,c] = 1 and (z) N N& = (ch?P), where
B e {0,1}.

Let denote N = Ng((c)). It is clear that N D N4 and for any element y € G
ly] > 8, y € N. If N # G, then an element a € G\N exists, |a] = 4, a® € w(G),
[{a), N] € w(G).

Let a,b ¢ N. Then [a,c] = ¢*h?, [b,c] = ¢**h?. Hence [ab,c] € (c) and ab € N.
It is easy to verify that ™' N = aN = bN. Hence [G : N] = 2 and N<G, G = N{a),
a? € w(Ng).

By the proved above, the subgroup N is a product of the quaternion group
of order 8 and a generalized quaternion group of order equal or greater than 16:
N=H-Q, ‘H‘ =38, ‘Q’ > 16, H = <h17h2>7 Q = (y,x), ‘y’ =2" >4, an*Z =¢
[H,Q] € w(G).

If |y| > 8, then N' = (y?) x (h?) < G and (y*) < G, {¢) < G, which contradicts
the assumption. Thus, |y| = 8.

Let us consider the quotient-group

G/NG = ((5) x (2)(@),

| = [z| = [a] = 2. If G/N& is non-Abelian, then it is a dihedral group and
contains an element (at) of order 4, where ¢ € (y, 7). It is clear that |at| > 4. Hence
at € N and a € N, which is impossible. Thus the quotient-group G /NG is Abelian,
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[N, (@)] =1 and [y,a] = ¢*Fh™. If m = 0 (mod 2), then [y?,a] = ¢! € (c), which is
impossible because a € N. Thus m = 1 and [y, a] = ¢*h. Hence

(ya)? = ya’ycth = " HEhz,

z € w(G). On the other hand, since |ya| > 4, (ya) N N& C (c)w(G) by the proved
above. We get a contradiction. O

The theorem is proved. O

Corollary 6. A group G of type o does not contain a quaternion subgroup if and
only if the norm Né does not contain such a subgroup.

4 Finite 2-groups with cyclic center and a non-Dedekind non-
metacyclic norm of Abelian non-cyclic subgroups (groups of

type )

Lemma 11. Let G be a finite 2-group with a non-Dedekind norm Néx of Abelian
non-cyclic subgroups which is a group of one of the types (4)-(8) of Proposition 2.
Then the center Z(G) of the group G is non-cyclic.

Proof. Let Néx be a group of one of the types which have been noted in the condition
of the lemma. Then the center Z(NZ) of the norm N is non-cyclic. If the norm
N§ is a group of type (6) of Proposition 2, then w(N&) € Z(G) and the group G
has the non-cyclic center.

So we will assume that NZ is a group of one of types (4)-(5) or (7)-(8). In
each of these cases w(Né‘) is an elementary Abelian subgroup of order 4. Since
w(N&) C Z(NE), we have w(N&) = w(G) by Lemma 2.

Suppose w(N&) ¢ Z(G), contrary to the conditions of the lemma. Then

w(NHNZ(G)#E

by the condition w(NZ) < G. Let w(NZ) = (a1) x (as), |a1| = |az| = 2, where
a1 € Z(G) and ag ¢ Z(G).

Let’s denote C' = Cg (w(Né‘)). Then G = C - (y), |y| > 4, y*> € C by Lemma 3.
Since Ng c C, Né C Né and C contains all Abelian non-cyclic subgroups of G,
N‘G4 = N(‘;‘. Since the norm Né‘ is non-metacyclic and Z(C) is non-cyclic, C'is either
a non-metacyclic non-Dedekind H As-group by Theorem 2 and C' = Ng = Né, or
C = H - @ is a product of the quaternion group H = (hy, hs) of order 8 and a
generalized quaternion group Q = (t,q), [t| = 2F > 8, 27 = ¢, g g =t
[H,Q] € w(C) and NA = NA = <t2’“*2>  H.

In the previous case N, ‘G4 is a group of type (6) of Proposition 2, which contradicts
the proved above.

Thus we will assume that C' = Néx and G = N‘G4 - (y), where y? € N‘G4. In this
case N4 is a non-Dedekind HAy-group of exponent 4. So |y| =8, y* = a1 € Z(G)
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by Lemma 4. It is also easy to prove that the norm N‘G4 contains all elements of
order 4 of the group G.
Let’s consider the quotient-group

G =G/w(G) =N (7),7° € NJ,

where [j| = 4. Since w (G) = N4 < G,
of order 2 on w(G), there is an involution Z such that (7) N (z) = E and [z,7] = 1
in w(G). Turning to the preimages, we have [2,y] = a, where a € w(G). Since
[zz,y] = 1, we conclude that 22 = a;. Let a € (a1), then [z,yz] =1 and |y2z‘ = 2.
But in this case y? € (2) w(G) and the intersection (7) N (Z) is non-identity in the
quotient-group G. It is a contradiction. Thus, a ¢ (a;) and we can assume without
loss of generality that @ = as. Then y~'zy = zaq, [z,y2] =22 = a1, and <y2, z> is
the quaternion group, which is impossible if the norm Né is a group of type (4) or
(5) of Proposition 2.

Let Né contain the quaternion group, i.e. Né is a group of type (7) or (8) of
Proposition 2. Then Néx = H-Q is a direct or a semidirect product of two quaternion
groups H and Q, [H, Q] C Q.

Then in the group G = N‘G4 - (y) the subgroup <y2, a2> is Abelian non-cyclic by

N—‘G‘“ > 8 and ¥ induces an automorphism

the inclusion w(N é) C Z(N&) and therefore (y*,az) is a normal subgroup in G.

The subgroup Né‘ is elementary Abelian of order 8 in the quotient-group

G =G/ (y* az2) = NG N (7).
Since g induces an automorphism of order 2 on Né, it is always possible to point
out involutions z1, 23 € Néx which are permutable with §. Turning to preimages we
get that [z;,y] = y*™ia®, i =1,2.

If 51 = sp = 1, then [2129,y] = y?. If (¢,2) = 1, then |yz122| <4 and y € N& by
the proved, which is impossible. Thus ¢ = 2t; and [z122,y] = y** € Z(G). But

(2122, 9°] = {(zm)Z,y} =1

by such conditions. From the second part of the equality we have (2122)2 =a; =y?
and |2122y2‘ = 2, which contradicts the structure of the norm Né.

Thus we can assume that at least one of numbers s; = 0. But then [z, y] = y?™
and we again get a contradiction repeating the above argument. In this case G = C'
and w (N&) C Z(G). O

Theorem 3. G is a group of type B if and only if it is a group of one of the following
types:
1) G is a non-metacyclic non-Hamiltonian H Ay-group with a cyclic center, G = Né;

2) G = (@7 )™ (), ol =2 >3, b = el = 2, [r.c] = 2 b, [o.d] =
[z,0] = 2", N& = ((2®) x (b)) N {¢);
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3) G = ((x) x 0) N(e) N {d), |z]| =2"n>2 [b] =|c]=I|d] =2[z,c] =[z,b] =
1, by =[e,d] = [b,d] = 22", d'wd =21, Né:(@ﬁ”>x@»x@x

4) G = (<C>>\H) <y>:H = <h17h2>7 |h1| = |h2| = 47h% = h% = [h17h2]}|c| = 4;
[c,h1] = 2, [c,ha] = 1, % = hy, [y, ha] = k2, [y,c] = h;ﬁl,Né ={(c)~NH.

Proof. Let a group G and its norm of Abelian non-cyclic subgroups satisfy the
conditions of the theorem. Let’s continue the proof of the theorem in the following
lemmas.

Lemma 12. Let G be a finite 2-group and its norm N‘G4 of Abelian non-cyclic
subgroups be a group of type (10) of Proposition 2. Then all Abelian non-cyclic
subgroups are normal in G and G = N‘G4.

Proof. Let Néx be a group of type (10) of Proposition 2, i.e.
Ng = (H x (a)) (b),

where H = (hl,h2>, ’hl‘ = ’hg‘ = 4, ]a\ = 2, ’b‘ = 8, b2 = hl, [hg,b] = a, [a,b] =
[h1, ho] = h? = h3. In particular, w (NZ) = (h?,a) and Z (Ng) = (h?) C Z(G).

Né contains all elements of order 2 of the group G by Lemma 3 and w (Né) =
w (G). Let’s denote C' = Cg (w(G)). Then [G:C] =2 and G = C (b), b*> € C. By
the proved above, the lower layer w (Né) contains all involutions of the centralizer
C, so the quotient-group C' = C/ (a) contains only one involution by Lemma 4.
Since C' is non-Abelian, C is a quaternion 2-group:

C=Q= @7,
T =2" >4, 5] =4, =7, g lag=7"".
Turning to the preimages and taking into account Lemma 4, we have that 22 =

-1 . m

y2 = h2, yley = 27 'a™, m € {0,1}. If m = 1, then y~'zy = 2 a and (zy)? =
hia ¢ <h%>, which is impossible. Therefore m =0, y~lzy = 2~ ! and

C=Q x{(a).
We can assume, without loss of generality, that H C @, hy € (z),(hy) = (y). If
|Q| > 8, then hy ¢ N¢ ({a,zhs)), which is impossible, because hy € N&. Thus
Q=H,C=H x (a) C N4 and
G = C(b) = N&.
]

Lemma 13. If a finite 2-group G has the norm Né of Abelian non-cyclic subgroups
which is a group of type (3) of Proposition 2, then G = N‘G4.
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Proof. Let a group G and its norm N‘G4 satisfy the conditions of the lemma,
NE = (H x (b)) (),

where H = <h1,h2>, |h1| = |h2| = 4, [hl, hQ] = h2 = h%, |b| = |C| = 2, [H, <b>] =
[H,(c)] = E, [b,c] = h3.

Suppose that G # Néx and let’s prove that Néx contains all involutions of the
group G. Indeed, otherwise we have (z,h?) 4Gy = (2)N& for any involution z €
G\N&. Therefore [Gy:Cg, ((2,h3))] < 2 and G\ (h?) contains an involution
y # h? which is permutable with z. So,

(y,2) N NG = (y) <« N§&,

which is impossible. Hence all involutions of a group G are contained in Né.

Suppose that an element x of order 4 exists in G\N‘é‘. By Lemma 4 2% = h2.
Thus any element a of order 4 of the norm Né is not permutable with x, otherwise
laz|=2 and € N& by the proved above. Let’s denote Go = (z) N and consider the
quotient-group Gy = G/ <h%> Since Né is an elementary Abelian group of order
16, normal in Gy and T induces an automorphism of order 2 on NZ, there exist
involutions 771,73 € N‘G4, (y1) N (72) = E, which are permutable with 7. Turning to
the preimages we will have [z, y;] € <h%>, i =1,2. It is easy to prove that the group
(y1,y2) contains an involution y # h§ which is permutable with z. Then (x,y) <1 G2
as an Abelian non-cyclic subgroup and

Ghy C (z,y) N NG = (y,hi).

Let t be an arbitrary non-central involution of Né which differs from y. Let’s
put
[z,t] = YR Lk € {0,1}.

Then [:E,t2] = h?™. On the other hand, [x,t2] = 1, therefore m = 0 and
[(a:> ,Né] - <h%> However in this case the group G> will contain an involu-
tion which does not belong to Né, that contradicts the proved above. Therefore
Né contains all elements of order 4 of the group G.

According to the assumption G # N é, we conclude that there is an element
z € G\NZ, |z| = 8. Since 22 € N&, x2| = 4 and all cyclic subgroups of order 4 are
normal in N‘G4, we have

(2%) 4G3 = (z) N,
Let’s consider the quotient-group Gz = Ga/ <x2> Since Né is a normal ele-
mentary Abelian group of order 8 and 7 induces an automorphism of order 2 on it,
there exist involutions 71, 73 € Né, (m1) N (7z) = E, which are permutable with
Z. Turning to the preimages we get [z,y;] € <:172>, 1 = 1,2. Tt is easy to check
that [z,y;] € <h%> and the group <x2, Y1, y2> contains an involution y which is
permutable with z. Then (x,y) <G5 as an Abelian non-cyclic subgroup and

Gh C (z,y) N NG = (y,2%).
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Let [z,t] = 2?™y*, where t is an arbitrary non-central involution of N4 which
differs from y. Since N& contains all elements of order 4, [z,] € (h?) by the condi-
tion [:E,t2] = 1. But then [mz,t] =1 and z? € Z(G3), which is impossible, because
the norm Né does not contain non-central elements of order 4. This contradiction
proves that G = N§. O

Lemma 14. If a finite 2-group G has a non-Dedekind norm Né‘ % G which is a
group of type (1) of Proposition 2, then G is a group of one of types (2) or (3) of
Theorem &.

Proof. Let G # Né and
NE = ({a) x () {e)

where |a| = 2", n > 2, |b| =|c| =2, [a,d = [a,b] = 1,[b,d = a®" . Since Ng <G,
the intersection N4 N Z(G) # E in the quotient-group G = G/ (a). We can assume
without loss of generality that b € Z(G). Then (a,b) <G, w ({a,b)) = <a2n71 , b> <G,

Let’s denote C' = Cg (<a2n71,b>). Then C <G, [G:C]=2and G = C X (c),
where ¢ € N&, |c| = 2. By Lemma 4 the quotient-group C' = C/ (b) has only one

involution and C' is a cyclic group or a generalized quaternion group.
Let C be cyclic, then its full preimage C' = (x) x (b) is Abelian and

[z,¢) € CNNE = (a,b).

Let’s put [z,c] = a™b*. If |[z,c]| = 2, then G’ C <a2> and G is an HAs-group,
contrary to the assumption. Thus |[z,c]| > 2. If |a] = 4, then [z,c] = a™'b by
the condition [z,c?] = 1, so (z¢)? € Z(G) and |z| < 8. So 2% = a'b. However,
¢ & Ng ((a?) x (zbc)) by such conditions, i.e. ¢ ¢ N4, which is impossible.

Let |a| > 4, then m = 2" 2m;, where (m1,2) = 1, (k,2) = 1. Thus [z,¢] =
a2 b, (zc)? = 22a*2"*b and (zc)® € Z(G). Since Z(G) = (a) and |z| > |a|
by the previous reasoning, (z¢)> = a. Let’s denote z¢ = y. Then |y| = 271,
[yv b] = y2n7 [yv C] = yi2n71b and

G = ()N )N ()

is a group of type (2) of Theorem 3. o o

Let C be a generalized quaternion group C = <h1, h2>, where ‘hl‘ =2"n>2,
— —on—1 R, T [— R
‘hg‘ =4, h12 = h22, ho lhlhg = hy ' Let h1 and ho denote the preimages of
elements h; and hg, respectively. Since the center Z(G) is cyclic, h%%l = h% =q2"!
h;lhlhg = hl_lbm, m € {0,1}, by Lemma 4. If m # 0, then

)

1

(h1hg)? = h3b = a®" b,

which contradicts Lemma 4. Thus m =0, C = H x (b) , H = (hq, ha) is a generalized
quaternion group. We also note that (a) C (h1) by the condition (a) < G.
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Since )
[ha, ] € (ha,b) N (b, c) = <a2"’ ,b>

and [z, ¢*] = 1, we conclude that [ha,c] € (a*"). Then one of the elements hac

or hsbc is of order 2, and hence one of the subgroups <h20, a2n71> or <h2bc, a2n71>

is elementary Abelian. Since (a) C Né, the element a has to normalize these
subgroups, which is possible only if |a| = 4.
Based on the fact that (hihs) x (b) is an Abelian non-cyclic subgroup, we have

[hiha,c] € ((hiha) x (b)) N NG = (a®,b).

It is easy to prove that [hihg, c] € <a2> by Lemma 4. It also follows that [hq,c| € <a2>.
Thus [H, Né] = <a2>.

Let’s denote B = (b,c). Since B is a 2-generated non-Abelian subgroup and
the commutant [B,G] C (a?) is of order 2, we have G = BCq(B) by [10]. We
can assume without loss of generality that H = C¢(B). If |H| = 8, then G is an
H Ay-group, which contradicts the assumption. So |H| > 8 and G is a group of type
(3) of Theorem 3. O

Lemma 15. If a finite 2-group G has the norm Né % G which is a group of type
(9) of Proposition 2, then G is a group of type (4) of Theorem 3.

Proof. Let N‘G4 be a group of type (9) of Proposition 2: Néx = (¢) N H, where
H = (hy,hy), |hi| = |ho| = 4,h2 = h3 = [h1, hal, || = 2" > 2, [e,he] = &',
[C, hg] = 1.

Suppose that N& # G. Since w (N&) C Z (N&) and w (N&) ¢ Z (G), we have
w(G) =w (N&) by Lemma 2 and G = C (y), where C = Cg (w (N&)) <G, y* € C,
ly| > 4 by Lemma 4. The group C contains all Abelian non-cyclic subgroups of the
group G, so

N4 C N4 Co.

Thus C is a 2-group which has the norm of Abelian non-cyclic subgroups of type (9)
of Proposition 2 and the non-cyclic center. We conclude that C' is an H As-group
and

C=N&=(NH
by Theorem 2. Thus
G=Cly) =) NH){y)lyl > 4,y* € C.

Let |y| = 2%. Since y ¢ C,w (G) N (y) € Z(G). Let’s denote (a1) = w (G) N (y)
and consider the quotient-group

G=Glw(G) =T ().

_Since _the lower layer w (6) Is an elementary Abelian subgroup of order 8 and
w (C) < G, we conclude that w (C) contains an involution Z such that [z,7] = 1,
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(Z) N (y) = E. Turning to the preimages we put [z,y] = a, where |a| = 2, a € w (G).
Then [22,y] =1 and 22 = a1 € Z(G). If a € Z (G), then [z,y?] =1, =2,
which is impossible, because the elements of the order 4 of Né do not have such
property. Thus a ¢ Z (G) and [z, yz] = a;. It follows that <z, y2> is the quaternion
group and |y| = 8.

If |¢| > 4, then a1 = "' € Z(G) and 2" ¢ (z,y*). But any quaternion
group in NZ does not contain @' This means that || = 4, ¢ ¢ Z(G) and
a; =h? ¢ <z, y2>. Taking into account the structure of the quaternion subgroups in
Né, we have <z,y2> = <h202m,h1hlzcs>.

Suppose that <y2> < G. Then we can assume that y? = hyc®™, 2 = hlhécs. Let’s
consider the quotient-group

k—2
vz

G=G/ () = (@ (M)~ @

Since (¢) is a characteristic subgroup in NZ, (¢) < G and [¢,7] € (¢*). Turning to
the preimages we have [c,y] = ¢*y*. So [¢*,y] =h3' # 1 and i =1 (mod 2). It is
easy to verify that in this case |cy| < 4, which contradicts the proved.

Thus <y2> 4 G. Then we can assume that y? = hlhécs and z = hgc®™, respec-
tively. Let’s consider the quotient-group

G = Glu(@) = (@ x () x (7)) (7).

Without loss of generality, (7) N Wé = <h_1> and Z = hg. Then [7,Z] = [?, h_z] =1
according to the choice of Z. We get

(@) Na| S NN (@) = (7 F) =

by the condition (¥, hs) < G. Thus [y, ho] = ¢*h?* and [y, c] = ' h"h;. We have
I # 0 (mod 2) by the first equality and the condition [y, 62] # 1. We have m =0
(mod 2) and r #Z 0 (mod 2) by the second equality and the condition [y,cz] # 1.
Thus [y, ho] = ¢2h2% and [y, c] = c2lh;ﬂ. Further /; = s (mod 2), because [y?, | =
2
.

We can assume without loss of generality that

G=Cy) =) NH) (),

where H = <h17h2>7 |h1| = |h2| = 4, h% = h% = [h17h2]7 |C| = 4, [C7h1] = 627
[c,ho] = 1, y? = hy, [y, ha] = k3, [y,c] = h;tl. In this group all Abelian non-cyclic
subgroups are contained in {c¢) X H and are normalized by this subgroup. At the
same time y ¢ Ng, because y ¢ Ng ({c,h?)). O

Theorem is proved. O

Corollary 7. Any group G of type (8 is a cyclic or metacyclic extension of the norm
Ng.
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