Finite 2-groups with a non-Dedekind non-metacyclic norm of Abelian non-cyclic subgroups

Fedir Lyman, Tetyana Lukashova, Marina Drushlyak

Abstract

The authors study finite 2-groups with non-Dedekind non-metacyclic norm N_{G}^{A} of Abelian non-cyclic subgroups depending on the cyclicness or the noncyclicness of the center of a group G. The norm N_{G}^{A} is defined as the intersection of the normalizers of Abelian non-cyclic subgroups of G. It is found out that such 2-groups are cyclic extensions of their norms of Abelian non-cyclic subgroups. Their structure is described.

Mathematics subject classification: 20D25. Keywords and phrases: Finite group; non-Dedekind group; non-metacyclic group; norm of group; norm of Abelian non-cyclic subgroups.

1 Introduction

One of the main directions in group theory is the study of the impact of characteristic subgroups on the structure of the whole group. Such characteristic subgroups include different Σ-norms of a group. A Σ-norm is the intersection of the normalizers of all subgroups of a system Σ (assuming that the system Σ is non-empty). It is clear that when the Σ-norm coincides with a group, then all subgroups of the system Σ are normal in the last one.

For the first time, R. Baer [1] considered the Σ-norm as a proper subgroup of a group in 1935 for the system of all subgroups of this group. He called it the norm of a group and denoted by $N(G)$. Narrowing the system of subgroups one can get different Σ-norms which can be considered as generalizations of the norm $N(G)$. Recently the interest in studying the Σ-norms does not decrease as evidenced by the series of works [2-4, 9, 11].

If Σ is the system of all Abelian non-cyclic subgroups, then such a Σ-norm will be called the norm of Abelian non-cyclic subgroups and denoted by N_{G}^{A}. Thus the norm N_{G}^{A} of Abelian non-cyclic subgroups of a group G is the intersection of the normalizers of all Abelian non-cyclic subgroups of a group G, assuming that the system of such subgroups is non-empty.

Here we improve and extend some earlier results [8].

2 Preliminary Results

In a group G which coincides with the norm N_{G}^{A} all Abelian non-cyclic subgroups (assuming the existence of at least one such a subgroup) are normal. Non-Abelian
(c) F.Lyman, T.Lukashova, M. Drushlyak, 2019
groups with this property were called $\overline{H A}$-groups $\left(\overline{H A}_{2}\right.$-groups in the case of 2groups) [7].

Proposition 1. [7] A non-Hamiltonian $\overline{H A}_{2}$-group does not contain an elementary Abelian subgroup of order 8 .

Proposition 2. [7] Finite non-Hamiltonian $\overline{H A_{2}}$-groups are groups of the following types:

1) $G=(\langle a\rangle \times\langle b\rangle) \lambda\langle c\rangle$, where $|a|=2^{n}, n>1,|b|=|c|=2,[a, b]=[a, c]=1$, $[b, c]=a^{2^{n-1}}$;
2) $G=\langle a\rangle \lambda\langle b\rangle$, where $|a|=2^{n},|b|=2^{m}, n \geq 2, m \geq 1,[a, b]=a^{2^{n-1}}$;
3) $G=(H \times\langle b\rangle) \lambda\langle c\rangle$, where $H=\left\langle h_{1}, h_{2}\right\rangle,\left|h_{1}\right|=\left|h_{2}\right|=4, h_{1}^{2}=h_{2}^{2},|b|=|c|=2$, $\left[h_{1}, h_{2}\right]=h_{1}^{2},[H,\langle b\rangle]=[H,\langle c\rangle]=E,[b, c]=h_{1}^{2}$;
4) $G=(\langle a\rangle \times\langle b\rangle)\langle c\rangle$, where $|a|=|b|=|c|=4, c^{2}=a^{2} b^{2},[c, b]=c^{2},[c, a]=a^{2}$;
5) $G=(\langle a\rangle \times\langle b\rangle)\langle c\rangle\langle d\rangle$, where $|a|=|b|=|c|=|d|=4, c^{2}=d^{2}=a^{2} b^{2},[a, c]=$ $[d, c]=a^{2},[b, d]=b^{2},[c, b]=[d, a]=c^{2}$;
6) $G=H \times\langle c\rangle$, where H is the quaternion group, $|c|=2^{n}, n \geq 2$;
7) $G=H \times Q$, where H and Q are the quaternion groups;
8) $G=(H \times\langle b\rangle)\langle c\rangle$, where $H=\left\langle h_{1}, h_{2}\right\rangle,\left|h_{1}\right|=\left|h_{2}\right|=|b|=|c|=4,\left[h_{1}, h_{2}\right]=h_{1}^{2}=$ $h_{2}^{2},[H,\langle b\rangle]=[H,\langle c\rangle]=E, c^{2}=b^{2} h_{1}^{2},[b, c]=b^{2}$;
9) $G=\left(\left\langle h_{2}\right\rangle \times\langle c\rangle\right)\left\langle h_{1}\right\rangle$, where $\left|h_{1}\right|=\left|h_{2}\right|=4,\left[h_{1}, h_{2}\right]=h_{1}^{2}=h_{2}^{2},|c|=2^{n}>2$, $\left[c, h_{1}\right]=c^{2^{n-1}}$;
10) $G=(H \times\langle b\rangle)\langle c\rangle$, where $H=\left\langle h_{1}, h_{2}\right\rangle,\left|h_{1}\right|=\left|h_{2}\right|=4,|b|=2,|c|=8$, $[b, c]=\left[h_{1}, h_{2}\right]=h_{1}^{2}=h_{2}^{2}, c^{2}=h_{1},\left[h_{2}, c\right]=b$;
11) $G=\langle a\rangle\langle b\rangle$, where $|a|=8,|b|=2^{n}>2, a^{4}=b^{2^{n-1}}, a^{-1} b a=b^{-1}$.

It is clear that the subgroup N_{G}^{A} is characteristic and contains the center $Z(G)$ of the group G.

To reduce the presentation, a finite 2-group with non-Dedekind non-metacyclic norm N_{G}^{A} of Abelian non-cyclic subgroups will be called a group of type α if the center $Z(G)$ of the group G is non-cyclic, and a group of type β if the center $Z(G)$ of the group G is cyclic.

The following corollary immediately follows from Proposition 2.
Corollary 1. If G is a group of type α and $G=N_{G}^{A}$, then N_{G}^{A} is a group of one of the types (4)-(9) of Proposition 2. If G is a group of type β and $G=N_{G}^{A}$, then N_{G}^{A} is a group of one of the types (1), (3), (10) of Proposition 2.

It turns out that there exist groups such that the center $Z\left(N_{G}^{A}\right)$ of the norm N_{G}^{A} of the group G is non-cyclic but the center $Z(G)$ of the group G is cyclic. The following example shows it.

Example 1. $G=(\langle b\rangle \lambda H)\langle y\rangle$, where $|b|=4, H=\left\langle h_{1}, h_{2}\right\rangle,\left|h_{1}\right|=4,\left[h_{1}, h_{2}\right]=$ $h_{1}^{2}=h_{2}^{2},\left[b, h_{2}\right]=1, y^{2}=h_{1},\left[y, h_{2}\right]=b^{2} h_{1}^{2},[y, b]=h_{2}$.

In this group all Abelian non-cyclic subgroups are contained in the group $\langle b\rangle \lambda H$ and are normal in it. So it is easy to verify that $N_{G}^{A}=\langle b\rangle \lambda H$ and $Z\left(N_{G}^{A}\right)=$ $\left\langle b^{2}\right\rangle \times\left\langle h_{1}^{2}\right\rangle$ is non-cyclic. At the same time $Z(G)=\left\langle h_{1}^{2}\right\rangle$ is cyclic.
Lemma 1. If Z is a central non-cyclic subgroup of a group G, then $\overline{N_{G}^{A}} \subseteq N(\bar{G})$ in the quotient-group $G / Z=\bar{G}$, where $N(\bar{G})$ is the norm of the group \bar{G}.

Proof. It suffices to show that the group $\overline{N_{G}^{A}}$ normalizes every cyclic subgroup of the group $\bar{G}=G / Z$.

Let $\bar{x} \in \bar{G}$. Then the full preimage of the subgroup $\langle\bar{x}\rangle$ in the group G is the Abelian non-cyclic subgroup $\langle x, Z\rangle$. Therefore, $N_{G}^{A} \subseteq N_{G}(\langle x, Z\rangle)$. In the quotientgroup \bar{G}

$$
\left[\overline{N_{G}^{A}} \subseteq \overline{N_{G}(\langle x, Z\rangle)} \subseteq N_{\bar{G}}(\langle\bar{x}\rangle)\right]
$$

thus $\overline{N_{G}^{A}} \subseteq N(\bar{G})$.
Let's denote the lower layer of a group G by $\omega(G)$. It is the subgroup generated by all elements of prime order of the group G.

Lemma 2. If the norm N_{G}^{A} of Abelian non-cyclic subgroups of a finite 2-group G is non-Dedekind non-metacyclic and its lower layer $\omega\left(N_{G}^{A}\right)$ is an elementary Abelian subgroup of order 4 , then N_{G}^{A} contains all involutions of the group G and $\omega\left(N_{G}^{A}\right)=$ $\omega(G)$.
Proof. Let a group G and its norm N_{G}^{A} of Abelian non-cyclic subgroups satisfy the conditions of the lemma. Then N_{G}^{A} is a group of one of types (4)-(10) of Proposition 2. Since $\omega\left(N_{G}^{A}\right) \triangleleft N_{G}^{A}$ and the subgroup $\omega\left(N_{G}^{A}\right)$ is characteristic in N_{G}^{A}, $\omega\left(N_{G}^{A}\right) \triangleleft G$. Therefore $\omega\left(N_{G}^{A}\right) \bigcap Z(G) \neq E$.

Let $\omega\left(N_{G}^{A}\right)=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle,\left|a_{1}\right|=\left|a_{2}\right|=2, a_{1} \in Z(G)$ for the definiteness. Suppose that G contains an involution $x \notin N_{G}^{A}$. Then the subgroup $\left\langle a_{1}, x\right\rangle$ is Abelian and normal in the group $G_{1}=\langle x\rangle N_{G}^{A}$. Since $\left[G_{1}: C_{G_{1}}\left(\left\langle a_{1}, x\right\rangle\right)\right] \leq 2,\left[y^{2}, x\right]=1$ for an arbitrary element $y \in N_{G}^{A}$. If N_{G}^{A} is a group of one of types (4)-(9) of Proposition 2, then $\left[\left(N_{G}^{A}\right)^{2},\langle x\rangle\right]=\left[\omega\left(N_{G}^{A}\right),\langle x\rangle\right]=E$. Therefore $\langle x\rangle \triangleleft G_{1}$ as the intersection of normal subgroups $\left\langle a_{1}, x\right\rangle$ and $\left\langle a_{2}, x\right\rangle$. Thus $G_{1}=\langle x\rangle \times N_{G}^{A}$ is a nonHamiltonian $\overline{H A}_{2}$-group which contains an elementary Abelian subgroup of order 8, which contradicts Proposition 1. So, in this case $\omega\left(N_{G}^{A}\right)=\omega(G)$.

Let N_{G}^{A} be a group of type (10) from Proposition 2. Then $Z\left(N_{G}^{A}\right)=\left\langle h_{1}^{2}\right\rangle$, where $h_{1} \in H,\left|h_{1}\right|=4$ and $h_{1}^{2}=a_{1} \in Z(G)$. By the proved above for the involution:

$$
\left[\langle x\rangle, N_{G}^{A}\right] \subseteq\left\langle a_{1}\right\rangle=\left\langle h_{1}^{2}\right\rangle
$$

Therefore $\left[x, b^{2}\right]=\left[x, h_{1}\right]=1$. If $\left[x, h_{2}\right]=1$ then $\left\langle x, h_{2}\right\rangle \bigcap N_{G}^{A}=\left\langle h_{2}\right\rangle \triangleleft N_{G}^{A}$, which is impossible. Thus, $\left[x, h_{2}\right]=h_{1}^{2}$ and $\left|x h_{2}\right|=2$. Since $x h_{2} \notin N_{G}^{A},\left[x h_{2}, b\right] \in\left\langle h_{1}^{2}\right\rangle$, $\left[x h_{2}, b^{2}\right]=\left[x h_{2}, h_{1}\right]=1$.

On the other hand, $\left[x h_{2}, h_{1}\right]=\left[h_{2}, h_{1}\right]=h_{1}^{2} \neq 1$. The contradiction proves that $\omega\left(N_{G}^{A}\right)=\omega(G)$.

Corollary 2. If the norm N_{G}^{A} of Abelian non-cyclic subgroups of a finite 2-group G is non-Dedekind non-metacyclic and has the non-cyclic center $Z\left(N_{G}^{A}\right)$, then $\omega\left(N_{G}^{A}\right)=$ $\omega(G)$.

Lemma 3. If the norm N_{G}^{A} of Abelian non-cyclic subgroups of a finite 2-group G is non-Dedekind, has the non-cyclic center and the non-central in G lower layer $\omega\left(N_{G}^{A}\right)$, then $G=C\langle y\rangle$, where $C=C_{G}\left(\omega\left(N_{G}^{A}\right)\right), C \triangleleft G,|y|>4, y^{2} \in C$. In this case every Abelian non-cyclic subgroup of a finite 2-group G is contained in C and $N_{G}^{A}=N_{C}^{A} \subseteq C$.

Proof. By the condition of the lemma the norm N_{G}^{A} is a group of one of the types (4)-(9) of Proposition 2. In each of these cases $\omega\left(N_{G}^{A}\right)$ is an elementary Abelian subgroup of order 4 and $\omega\left(N_{G}^{A}\right) \not \subset Z(G)$ according to the condition of the lemma.

Let's denote $C=C_{G}\left(\omega\left(N_{G}^{A}\right)\right)$. Since $\omega\left(N_{G}^{A}\right) \triangleleft G, C \triangleleft G,[G: C]=2$. Thus $G=C\langle y\rangle$, where $y^{2} \in C$.

Since $\omega\left(N_{G}^{A}\right) \subseteq Z\left(N_{G}^{A}\right), N_{G}^{A} \subseteq C$ and $y \notin N_{G}^{A}$. By Lemma $2 \omega\left(N_{G}^{A}\right)=\omega(G)$, so $|y|>2$. Let $|y|=4$, then the subgroup $\langle y\rangle \omega(G)$ is a dihedral group of order 8. Since $\langle y\rangle \omega(G)=\langle y, b\rangle$, we have $|y b|=2$. But $y b \in \omega(G)$ and $y \in \omega(G)$ by such conditions, which is impossible. Thus $|y|>4$. Taking into account that every Abelian non-cyclic subgroup contains $\omega\left(N_{G}^{A}\right)$, we conclude that it is contained in C. Therefore $N_{G}^{A}=N_{C}^{A} \subseteq C$.

Lemma 4. Let G be a group of type β and the center $Z\left(N_{G}^{A}\right)$ is cyclic and contains an involution a. Then the element a is contained in every cyclic subgroup of composite order of the group G.

Proof. Let x be an arbitrary element of the group $G,|x|=2^{k}, k>1$. Let $\langle x\rangle \cap\langle a\rangle=$ E and $a \in Z\left(N_{G}^{A}\right),|a|=2$. Then $[x, a]=1$ and $\langle x, a\rangle \triangleleft G_{1}=\langle x\rangle N_{G}^{A}$. Since $\left\langle x^{2}\right\rangle \triangleleft G_{1}$ and $\left\langle x^{2^{k-1}}\right\rangle \triangleleft G_{1}$, we have $x^{2^{k-1}} \in Z\left(G_{1}\right)$.

If $x^{2^{k-1}} \notin N_{G}^{A}$, then for an arbitrary element $y \in N_{G}^{A}\langle y\rangle \times\left\langle x^{2^{k-1}}\right\rangle \triangleleft G_{1}$,

$$
\left(\langle y\rangle \times\left\langle x^{2^{k-1}}\right\rangle\right) \cap N_{G}^{A}=\langle y\rangle \triangleleft N_{G}^{A}
$$

Thus the norm N_{G}^{A} is Dedekind, which is impossible. Then $x^{2^{k-1}} \in N_{G}^{A}, x^{2^{k-1}} \in$ $Z\left(N_{G}^{A}\right), a \in Z\left(N_{G}^{A}\right)$ and $Z\left(N_{G}^{A}\right)$ is non-cyclic, which contradicts the condition. Thus, $\langle x\rangle \cap\langle a\rangle \neq E$ and $a \in\langle x\rangle$.

3 Finite 2-groups with a non-cyclic center and a non-Dedekind non-metacyclic norm of Abelian non-cyclic subgroups (groups of type α)

The norm N_{G}^{A} of Abelian non-cyclic subgroups is closely related to the norm N_{G} of non-cyclic subgroups. The last one is the intersection of the normalizers of all non-cyclic subgroups of a group G and was studied in [5] for the case of finite

2-groups. If $G=N_{G}$, then all non-cyclic subgroups are normal in the group G. Such groups were studied in [6] and were called \bar{H}-groups.

In the general case $N_{G} \subseteq N_{G}^{A}$. However, if every non-cyclic subgroup is covered by Abelian non-cyclic subgroups, then $N_{G}=N_{G}^{A}$. In particular, we obtain the following.

Theorem 1. If G is a group of type α and does not contain the quaternion group, then $N_{G}^{A}=N_{G}$.

Proof. Since the center of the group G is non-cyclic, $\omega(G)=\omega\left(N_{G}^{A}\right)$ by Corollary 2 . Taking into account that the group G does not contain the quaternion group and has a non-cyclic center, every non-cyclic subgroup contains the lower layer $\omega(G)$. Therefore $\langle x, \omega(G)\rangle$ is an Abelian non-cyclic subgroup for any element x of an arbitrary non-cyclic subgroup. Thus, every non-cyclic subgroup is covered by Abelian non-cyclic subgroups and $N_{G}^{A}=N_{G}$.

Lemma 5. Any group of type α of exponent 4 is an $\overline{H A_{2}}$-group.
Proof. Let a group G satisfy the conditions of the lemma. Then $\omega\left(N_{G}^{A}\right)=\omega(G)$ by Corollary 2 and $\omega(G)$ is a central elementary Abelian group of order 4.

The quotient-group $\bar{G}=G / \omega(G)$ is a group of exponent 2. Thus \bar{G} is Abelian and $G^{\prime} \subseteq \omega(G)$. Since every Abelian non-cyclic subgroup of a group G contains $\omega(G)$, every such subgroup is normal in G and G is an $\overline{H A_{2}}$-group.

Corollary 3. Let G be a group of type α. If the group G contains elements of order 4 which are not contained in the norm N_{G}^{A}, then $\exp G>4$.

Lemma 6. Let G be a group of type α. If an element $x \in G \backslash N_{G}^{A},|x|=4$ exists, then the subgroup $G_{1}=\langle x\rangle N_{G}^{A}$ is an $\overline{H A_{2}}$-group.

Proof. Let $x \in G \backslash N_{G}^{A},|x|=4$. By Corollary $2 \omega\left(N_{G}^{A}\right)=\omega(G) \subseteq Z(G)$. Therefore $\langle x\rangle \omega(G) \triangleleft G_{1}=\langle x\rangle N_{G}^{A}$ and

$$
G_{1}^{\prime} \subseteq\langle x\rangle \omega(G) \cap N_{G}^{A}=\omega(G) .
$$

Since every Abelian non-cyclic subgroup of the group G_{1} contans $\omega(G)$, it is normal in G_{1}. Thus G_{1} is an $\overline{H A_{2}}$-group.

Let's denote a subgroup which is generated by the elements of order not exceeding 2^{m} by $\omega_{m}(G)$. In particular, $\omega_{1}(G)=\omega(G)$ is the lower layer of the group G.

Corollary 4. Let G be a group of type α. If the norm N_{G}^{A} is a group of types (5), (7), (8), (6) $(n>2)$ and (9) $(n>2)$ of Proposition 2, then $\omega_{2}\left(N_{G}^{A}\right)=\omega_{2}(G)$ and $\omega_{2}\left(N_{G}^{A}\right)$ is a group of exponent 4.

Proof. Suppose that the conditions of the corollary are satisfied and an element $x \in G \backslash N_{G}^{A},|x|=4$ exists. Then $G_{1}=\langle x\rangle N_{G}^{A}$ is an $\overline{H A_{2}}$-group by Lemma 5. Taking into account the structure of the norm N_{G}^{A} and the description of $\overline{H A_{2}}$-groups we get a contradiction. Thus $\omega_{2}\left(N_{G}^{A}\right)=\omega_{2}(G)$.

Lemma 7. If $\omega_{2}\left(N_{G}^{A}\right)=\omega_{2}(G)$ in a group G of type α, then the group G does not contain a generalized quaternion group of order greater than 8. If in this case the group G contains the quaternion group H, then $H \subset N_{G}^{A}$. Moreover $N_{G}=N_{N_{G}^{A}}$.

Corollary 5. Let G be a group of type α and its norm N_{G}^{A} does not contain the quaternion group. If $\omega_{2}\left(N_{G}^{A}\right)=\omega_{2}(G)$, then the group G does not contain the quaternion group and $N_{G}^{A}=N_{G}$.

Theorem 2. G is a group of type α if and only if it is a group of one of the following types:

1) G is a non-metacyclic non-Dedekind $\overline{H A_{2}}$-group with a non-cyclic center, $G=$ N_{G}^{A};
2) $G=H \cdot Q$, where H is the quaternion group of order $8, Q$ is a generalized quaternion group, $H=\left\langle h_{1}, h_{2}\right\rangle,\left|h_{1}\right|=\left|h_{2}\right|=4,\left[h_{1}, h_{2}\right]=h_{1}^{2}=h_{2}^{2}, Q=\langle y, x\rangle$, $|y|=2^{n}, n \geq 3,|x|=4, y^{2^{n-1}}=x^{2}, x^{-1} y x=y^{-1}, H \cap Q=E,[Q, H] \subseteq\left\langle x^{2}, h_{1}^{2}\right\rangle$, $N_{G}^{A}=H \times\left\langle y^{2^{n-2}}\right\rangle$.

Proof. The sufficiency of the conditions of the theorem is easy to verify directly. Let's prove the necessity of the conditions of the theorem.

Since the center $Z(G)$ is non-cyclic, $\omega\left(N_{G}^{A}\right) \subseteq Z(G)$ and $\omega\left(N_{G}^{A}\right)=\omega(G)$ by Lemma 2. By the condition of the theorem and Corollary 1 the norm N_{G}^{A} is a group of one of the types (4)-(9) of Proposition 2.

Let's continue the proof of the theorem depending on the structure of the norm N_{G}^{A}.
Lemma 8. Let G be a group of type α and let its norm N_{G}^{A} be a group of one of types (4), (5), (7), (8) and (9) $(n=2)$ of Proposition 2. Then $G=N_{G}^{A}$.
Proof. Suppose that $G \neq N_{G}^{A}$. Let's prove that G is a group of exponent 4. Let an element $x \in G,|x|=8$, exist.

If in this case the norm N_{G}^{A} is a group of one of types (5), (7), (8) of Proposition 2, then $\omega_{2}\left(N_{G}^{A}\right)=\omega_{2}(G)$ by Corollary 4 and $x^{2} \in N_{G}^{A}$.

Let the norm N_{G}^{A} be a group of one of types (4) or (9) ($n=2$) of Proposition 2. Suppose that $x^{2} \notin N_{G}^{A}$. Since $\langle x\rangle \omega(G) \triangleleft G_{1}=\langle x\rangle N_{G}^{A}$ and

$$
\left[\langle x\rangle, N_{G}^{A}\right] \subseteq\langle x\rangle \omega(G) \cap N_{G}^{A}=\omega(G),
$$

we have $\left\langle x^{2}\right\rangle \triangleleft G_{1},\left[\left\langle x^{2}\right\rangle, N_{G}^{A}\right]=E$ and $x^{2} \in Z\left(G_{1}\right)$. But in this case $\omega\left(G_{1}\right) \neq \omega\left(N_{G}^{A}\right)$, which is impossible by Lemma 2. Thus $x^{2} \in N_{G}^{A}$,

$$
[\langle x\rangle, \omega(G)] \subseteq\langle x\rangle \omega(G) \cap N_{G}^{A}=\left\langle x^{2}\right\rangle \omega(G) .
$$

Let us consider the quotient-group $\overline{G_{1}}=G_{1} / \omega(G)$. By the proved above ${\overline{G_{1}}}^{\prime} \subseteq$ $\left\langle\bar{x}^{2}\right\rangle$. If ${\overline{G_{1}}}^{\prime} \neq \bar{E}$ and $\bar{x} \notin Z\left(\overline{G_{1}}\right),\langle\bar{x}\rangle \triangleleft \overline{G_{1}}$, then $\left[\overline{G_{1}}: C_{\overline{G_{1}}}(\langle\bar{x}\rangle)\right]=2$. Thus $\overline{N_{G}^{A}}$ contains an element \bar{y} of order 2 which is permutable with \bar{x}. Therefore $\langle\bar{x}, \bar{y}\rangle$ is a dihedral group of order 8 and $|\overline{x y}|=2$. Since $\omega(G)$ is a central non-cyclic subgroup,
$\overline{N_{G}^{A}} \leq N(\bar{G})$ by Lemma 1. Therefore $\langle\overline{x y}\rangle \triangleleft \overline{G_{1}}$. Thus $\overline{G_{1}}$ is Abelian, which is impossible.

Therefore ${\overline{G_{1}}}^{\prime}=E, G_{1}^{\prime} \subseteq \omega\left(N_{G}^{A}\right)$ and G_{1} is an $\overline{H A_{2}}$-group which contains a central cyclic subgroup of order 4 , which contradicts the structure of the norm N_{G}^{A}. Thus G is a group of exponent 4. G is an $\overline{H A_{2}}$-group by Lemma 5 .

Lemma 9. Let G be a group of type α and its norm N_{G}^{A} is a direct or a semi-direct product of a normal cyclic group of order greater than 4 and the quaternion group. Then $G=N_{G}^{A}$.

Proof. Let the norm N_{G}^{A} satisfies the conditions of the lemma. It is a group of type (6) or (9) $(n>2)$. Suppose that $G \neq N_{G}^{A}$. Since the center of the group G is non-cyclic, then $\omega\left(N_{G}^{A}\right)=\omega(G)$ by Lemma 2. Moreover, $\omega_{2}\left(N_{G}^{A}\right)=\omega_{2}(G)$ by Corollary 4.

If the norm N_{G}^{A} is a group of type (6) $(n>2)$, then $N_{G}^{A}=N_{G}$ by Lemma 7. By Theorem $2[5] G$ is an $\overline{H A_{2}}$-group and it is a semi-direct product of a normal cyclic subgroup of order greater than 4 and the quaternion group. Thus $G=N_{G}^{A}$, which is impossible.

Let the norm N_{G}^{A} be a group of type (9) $(n>2)$. Then N_{G}^{A} contains all quaternion groups by Lemma 7 and the non-cyclic norm N_{G} of a group G coincides with the non-cyclic norm of the subgroup $N_{G}^{A}, N_{G}=N_{N_{G}^{A}}=\left\langle c^{2}\right\rangle \times H,\left|c^{2}\right| \geq 4$. By Theorem 2 [5] G is an $\overline{H A_{2}}$-group and $G=N_{G}^{A}$, which is impossible.

Lemma 10. Let G be a group of type α and let its norm N_{G}^{A} be a group of the type $N_{G}^{A}=H \times\langle c\rangle$, where H is the quaternion group, $|c|=4$. Then either $G=N_{G}^{A}$, or G is a group of type (2) of Theorem 2.

Proof. By Lemma $2 \omega\left(N_{G}^{A}\right)=\omega(G)$. If $N_{G}^{A}=\omega_{2}(G)$, then $N_{G}=N_{N_{G}^{A}}=N_{G}^{A}$ by Lemma 7. By Theorem 2 [5] G is an $\overline{H A_{2}}$-group and $G=N_{G}^{A}$.

Let assume that $N_{G}^{A} \neq \omega_{2}(G)$ and an element $x \in G \backslash N_{G}^{A},|x|=4$ exists. By Lemma $6 G_{1}=\langle x\rangle N_{G}^{A}$ is an $\overline{H A_{2}}$-group of exponent 4. If $[x, c]=1$, then G_{1} contains a central cyclic subgroup $\langle c\rangle$ of order 4 , which is impossible by Proposition 2, because $\left|\omega_{2}\left(G_{1}\right)\right|=64$. Thus $c \notin Z(G)$.

If $\langle c\rangle \triangleleft G$ and $\langle c\rangle$ is a non-central subgroup, then $[G: C]=2$, where $C=C_{G}(\langle c\rangle)$. Let's show that under these conditions all elements of order greater than 4 are permutable with the element c. Let $y \in G \backslash N_{G}^{A},|y|=2^{s}, s>2$. If $\langle y\rangle \cap N_{G}^{A} \subseteq \omega(G)$, then

$$
\left[\langle y\rangle, N_{G}^{A}\right] \subseteq\langle y\rangle \omega(G) \cap N_{G}^{A}=\omega(G)
$$

and $\left[\left\langle y^{2}\right\rangle, N_{G}^{A}\right]=E$. But in this case $\omega(G) \neq \omega\left(N_{G}^{A}\right)$, which contradicts Lemma 2 . Therefore, $\langle y\rangle \cap N_{G}^{A}=\left\langle y^{2^{s-2}}\right\rangle$.

Let $y_{1}=y^{2^{s-3}}, y_{1}^{2}=c^{m} h^{k}$, where $h \in H$. Let us consider $G_{2}=\left\langle y_{1}\right\rangle N_{G}^{A}$. Since

$$
\left[\left\langle y_{1}\right\rangle, N_{G}^{A}\right] \subseteq\left\langle y_{1}\right\rangle \omega(G) \cap N_{G}^{A}=\left\langle y_{1}^{2}\right\rangle \omega(G),
$$

we have $\left\langle y_{1}^{2}\right\rangle \triangleleft G_{2}$. Thus either $m \equiv 0(\bmod 2)$ and $(k, 2)=1$, or $k \equiv 0(\bmod 2)$ and $(m, 2)=1$.

In the first case $y_{1}^{2}=c^{2 m_{1}} h^{k},(k, 2)=1$. Let consider the quotient-group $\bar{G}=$ $G / \omega(G)$. By the proved above,

$$
\left[\left\langle\bar{y}_{1}\right\rangle, \overline{N_{G}^{A}}\right] \subseteq\left\langle\bar{y}_{1}\right\rangle \cap \overline{N_{G}^{A}}=\left\langle\bar{y}_{1}^{2}\right\rangle=\langle\bar{h}\rangle .
$$

Let h_{1} be an element of the subgroup H which is not permutable with h. Then $\left[\left\langle\bar{h}_{1}\right\rangle,\left\langle\bar{y}_{1}\right\rangle\right]=\left\langle\bar{y}_{1}^{2 l}\right\rangle=\left\langle\bar{h}^{k l}\right\rangle$. If $(l, 2)=1$, then $\left\langle\bar{y}_{1}, \bar{h}_{1}\right\rangle$ is a dihedral group and $\left|\bar{y}_{1} \bar{h}_{1}\right|=2$. By Lemma $1\left\langle\bar{y}_{1} \bar{h}_{1}\right\rangle \triangleleft \overline{G_{2}}$ and therefore $\overline{G_{2}}=\overline{N_{G}^{A}} \times\left\langle\bar{y}_{1} \bar{h}_{1}\right\rangle$. Hence $\left[\bar{y}_{1} \bar{h}_{1}, \bar{h}_{1}\right]=\left[\bar{y}_{1}, \bar{h}_{1}\right]=1$, which is impossible. Thus $(l, 2) \neq 1$ and $\left[\bar{h}_{1}, \bar{y}_{1}\right]=1$. But then $\left[h_{1}, y_{1}\right] \in \omega\left(N_{G}^{A}\right),\left[h_{1}, y_{1}^{2}\right]=\left[h_{1}, h\right]=1$, which contradicts the choice of h_{1}.

Thus $y_{1}^{2}=c^{m} h^{2 k_{1}}$, where $(m, 2)=1$, and $[y, c]=1$. Hence the elements of order greater then 4 are contained in the centralizer C.

Let $x \notin C$. Then $|x|=4$. Taking into account $[G: C]=2$, we conclude that $G=C\langle x\rangle$, where $x^{2} \in \omega(G),\left[\langle x\rangle, N_{G}^{A}\right] \subseteq \omega(G)$. By the proved above, the norm N_{G}^{A} contains all elements of order 4 of the centralizer C, i.e. $N_{G}^{A}=\omega_{2}(C)$. If $\exp C=4$, then $N_{G}^{A}=C$ and $G=N_{G}^{A} \cdot\langle x\rangle$. By Lemma $6 G$ is an $\overline{H A_{2}}$-group which does not coincide with N_{G}^{A}, which is impossible. Thus $\exp C>4$.

Since the norm N_{C}^{A} of the subgroup C contains N_{G}^{A} and $c \in Z(C)$, the norm N_{C}^{A} is a group of one of the types:

1) $N_{C}^{A}=\langle y\rangle \times H,|y|=2^{n}, n \geq 3, y^{2^{n-2}}=c$;
2) $N_{C}^{A}=\langle y\rangle \lambda H,[\langle y\rangle, H]=\left\langle y^{2^{n-1}}\right\rangle,|y|=2^{n}, n \geq 3, y^{2^{n-2}}=c$.

By Lemma $9, N_{C}^{A}=C$. Let's consider each of these cases separately.
(1) Let $C=N_{C}^{A}=\langle y\rangle \times H$, then $G=(\langle y\rangle \times H)\langle x\rangle, x^{2} \in C$. Let's consider the quotient group $\bar{G}=G / \omega(G) \cong(\langle\bar{y}\rangle \times \bar{H})\langle\bar{x}\rangle$. Since $\langle\bar{y}\rangle=\overline{Z(C)}$, the subgroup $\langle\bar{y}, \bar{x}\rangle$ contains a cyclic subgroup of index 2 . Therefore the following relations are possible between \bar{x} and \bar{y}.

If $[\bar{y}, \bar{x}]=1$, then $G^{\prime} \subseteq \omega(G)$ and G is an $\overline{H A_{2}}$-group, which contradicts $G \neq N_{G}^{A}$.
If $\bar{x}^{-1} \overline{y x}=\bar{y}^{-1} \bar{y}^{2^{n-2}}, n \geq 4$, then turning to the preimages $x^{-1} y x=y^{-1} c z$, where $z \in \omega(G)$. Therefore $x^{-2} y x^{2}=x^{-1} y^{-1} c z x=y c^{-2}$, which contradicts $x^{2} \in Z(G)$.

If $\bar{x}^{-1} \overline{y x}=\overline{y y}^{2}{ }^{2-2}$, where $n \geq 4$, then $|y| \geq 16, x^{-1} y x=y c z$, where $z \in \omega(G)$, and $x^{-1} y^{2} x=y^{2} c^{2}$. Since $c \in\langle y\rangle, y^{2}=c$ and $|y|=8$, which is impossible.

Thus $G=H \cdot Q$ is a group of the type (2) of Theorem 2 , where one of the groups H or Q is a generalized quaternion group of order greater than 8 , and the other one is the quaternion group, $[H, Q] \subseteq \omega(G)$.
(2) Let $C=N_{C}^{A}=\langle y\rangle \lambda H,[\langle y\rangle, H]=\left\langle y^{2^{n-1}}\right\rangle,|y|=2^{n}, n \geq 3, y^{2^{n-2}}=c$.

Let us consider the quotient-group

$$
\bar{G}=G / \omega(G) \cong(\langle\bar{y}\rangle \lambda \bar{H})\langle\bar{x}\rangle,
$$

where $[\bar{H},\langle\bar{x}\rangle]=E,[\langle\bar{y}\rangle,\langle\bar{x}\rangle] \subseteq\langle\bar{y}, \bar{H}\rangle$. Let $\bar{x}^{-1} \overline{y x}=\bar{y}^{\alpha} \bar{h}^{\beta}$, where $\bar{h} \in \bar{H}$. Then by the condition $\left[\bar{x}^{2}, \bar{y}\right]=1$, we have

$$
\bar{x}^{-2} \overline{y x}^{2}=\left(\bar{y}^{\alpha} \bar{h}^{\beta}\right)^{\alpha} \bar{h}^{\beta}=\bar{y}^{\alpha^{2}} \bar{h}^{\beta(\alpha+1)}=\bar{y} .
$$

If $\beta \equiv 1(\bmod 2)$, then $\alpha^{2} \equiv 1\left(\bmod 2^{n-1}\right)$ and $\alpha= \pm 1+2^{n-1} t$ or $\alpha= \pm 1+2^{n-2} t$. It is easy to verify that in each case $\left[h_{1},(x y)^{2}\right] \neq 1$ for the element $h_{1} \in H$ which is not permutable with h. On the other hand, $\left[h_{1}, x\right] \in \omega(G),\left[h_{1}, y\right] \in \omega(G)$. Thus, $\left[h_{1}, x y\right] \in \omega(G)$ and $\left[h_{1},(x y)^{2}\right]=1$. We get a contradiction.

Thus $\beta \equiv 0(\bmod 2)$ and $\langle\bar{y}\rangle \triangleleft \bar{G}$. Repeating the above proof we get that $\bar{x}^{-1} \overline{y x}=\bar{y}^{-1}$. Then $G=\langle y\rangle G_{1}$, where $G_{1}=N_{G}^{A}\langle x\rangle$ is an $\overline{H A_{2}}$-group, which is a direct or a semi-direct product of two quaternion groups. Thus $G=H \cdot Q$ is a group of the type (2) of Theorem 2.

Suppose that $\langle c\rangle \notin G$. Hence $[\langle c\rangle, G] \subseteq \omega(G)$.
Let x be an element of $G,|x| \geq 8$. If $\langle x\rangle \bigcap N_{G}^{A} \subseteq \omega(G)$, then

$$
\left[\langle x\rangle, N_{G}^{A}\right] \subseteq\langle x\rangle \omega(G) \bigcap N_{G}^{A}=\omega(G)
$$

and $\left[\left\langle x^{2}\right\rangle, N_{G}^{A}\right]=E$. Hence $G_{1}=\left\langle x^{2}\right\rangle N_{G}^{A}$ is an $\overline{H A_{2}}$-group which has two central cyclic subgroups $\langle x\rangle$ and $\langle c\rangle$ of order 4 , which contradicts the description of $\overline{H A_{2}}$ groups. Thus, $x^{2^{k}}=c^{\alpha} h^{\beta}$ (where either α or β is not divisible by 2) and

$$
\left[\langle x\rangle, N_{G}^{A}\right] \subseteq\left\langle x^{2^{k}}\right\rangle \omega(G)
$$

Since $\left\langle x^{2}\right\rangle \triangleleft G_{1}$, either $\alpha \equiv 0(\bmod 2)$ and $\beta \equiv 1(\bmod 2)$, or $\alpha \equiv 1(\bmod 2)$ and $\beta \equiv 0(\bmod 2)$.

If $\alpha \equiv 0(\bmod 2)$ and $\beta \equiv 1(\bmod 2)$, then $\left[\langle x\rangle, N_{G}^{A}\right] \subseteq \omega(G)$ and $\left[x^{2}, h_{1}\right]=1$. On the other hand, $\left[x^{2}, h_{1}\right]=\left[c^{2 \alpha} h^{\beta}, h_{1}\right]=\left[h^{\beta}, h_{1}\right] \neq 1$. We get a contradiction. Thus $x^{2^{k}}=c^{\alpha} h^{2 \beta}$, where $(\alpha, 2)=1$. Hence $[x, c]=1$ and $\langle x\rangle \cap N_{G}^{A}=\left\langle c h^{2 \beta}\right\rangle$, where $\beta \in\{0,1\}$.

Let denote $N=N_{G}(\langle c\rangle)$. It is clear that $N \supseteq N_{G}^{A}$ and for any element $y \in G$ $|y| \geq 8, y \in N$. If $N \neq G$, then an element $a \in G \backslash N$ exists, $|a|=4, a^{2} \in \omega(G)$, $\left[\langle a\rangle, N_{G}^{A}\right] \subseteq \omega(G)$.

Let $a, b \notin N$. Then $[a, c]=c^{2 r} h^{2},[b, c]=c^{2 s} h^{2}$. Hence $[a b, c] \in\langle c\rangle$ and $a b \in N$. It is easy to verify that $a^{-1} N=a N=b N$. Hence $[G: N]=2$ and $N \triangleleft G, G=N\langle a\rangle$, $a^{2} \in \omega\left(N_{G}^{A}\right)$.

By the proved above, the subgroup N is a product of the quaternion group of order 8 and a generalized quaternion group of order equal or greater than 16: $N=H \cdot Q,|H|=8,|Q| \geq 16, H=\left\langle h_{1}, h_{2}\right\rangle, Q=\langle y, x\rangle,|y|=2^{n}>4, y^{2^{n-2}}=c$, $[H, Q] \subseteq \omega(G)$.

If $|y|>8$, then $N^{\prime}=\left\langle y^{2}\right\rangle \times\left\langle h^{2}\right\rangle \triangleleft G$ and $\left\langle y^{4}\right\rangle \triangleleft G,\langle c\rangle \triangleleft G$, which contradicts the assumption. Thus, $|y|=8$.

Let us consider the quotient-group

$$
G / N_{G}^{A} \cong(\langle\bar{y}\rangle \times\langle\bar{x}\rangle)\langle\bar{a}\rangle,
$$

$|\bar{y}|=|\bar{x}|=|\bar{a}|=2$. If G / N_{G}^{A} is non-Abelian, then it is a dihedral group and contains an element $\langle\bar{a} \bar{t}\rangle$ of order 4 , where $\bar{t} \in\langle\bar{y}, \bar{x}\rangle$. It is clear that $|a t|>4$. Hence at $\in N$ and $a \in N$, which is impossible. Thus the quotient-group G / N_{G}^{A} is Abelian,
$[\bar{N},\langle\bar{a}\rangle]=1$ and $[y, a]=c^{k} h^{m}$. If $m \equiv 0(\bmod 2)$, then $\left[y^{2}, a\right]=c^{2 k} \in\langle c\rangle$, which is impossible because $a \in N$. Thus $m=1$ and $[y, a]=c^{k} h$. Hence

$$
(y a)^{2}=y a^{2} y c^{k} h=c^{1+k} h z,
$$

$z \in \omega(G)$. On the other hand, since $|y a|>4,\langle y a\rangle \cap N_{G}^{A} \subseteq\langle c\rangle \omega(G)$ by the proved above. We get a contradiction.

The theorem is proved.
Corollary 6. A group G of type α does not contain a quaternion subgroup if and only if the norm N_{G}^{A} does not contain such a subgroup.

4 Finite 2-groups with cyclic center and a non-Dedekind nonmetacyclic norm of Abelian non-cyclic subgroups (groups of type β)

Lemma 11. Let G be a finite 2-group with a non-Dedekind norm N_{G}^{A} of Abelian non-cyclic subgroups which is a group of one of the types (4)-(8) of Proposition 2. Then the center $Z(G)$ of the group G is non-cyclic.

Proof. Let N_{G}^{A} be a group of one of the types which have been noted in the condition of the lemma. Then the center $Z\left(N_{G}^{A}\right)$ of the norm N_{G}^{A} is non-cyclic. If the norm N_{G}^{A} is a group of type (6) of Proposition 2, then $\omega\left(N_{G}^{A}\right) \subseteq Z(G)$ and the group G has the non-cyclic center.

So we will assume that N_{G}^{A} is a group of one of types (4)-(5) or (7)-(8). In each of these cases $\omega\left(N_{G}^{A}\right)$ is an elementary Abelian subgroup of order 4. Since $\omega\left(N_{G}^{A}\right) \subseteq Z\left(N_{G}^{A}\right)$, we have $\omega\left(N_{G}^{A}\right)=\omega(G)$ by Lemma 2 .

Suppose $\omega\left(N_{G}^{A}\right) \not \subset Z(G)$, contrary to the conditions of the lemma. Then

$$
\omega\left(N_{G}^{A}\right) \cap Z(G) \neq E
$$

by the condition $\omega\left(N_{G}^{A}\right) \triangleleft G$. Let $\omega\left(N_{G}^{A}\right)=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle,\left|a_{1}\right|=\left|a_{2}\right|=2$, where $a_{1} \in Z(G)$ and $a_{2} \notin Z(G)$.

Let's denote $C=C_{G}\left(\omega\left(N_{G}^{A}\right)\right)$. Then $G=C \cdot\langle y\rangle,|y|>4, y^{2} \in C$ by Lemma 3. Since $N_{C}^{A} \subset C, N_{G}^{A} \subseteq N_{C}^{A}$ and C contains all Abelian non-cyclic subgroups of G, $N_{G}^{A}=N_{C}^{A}$. Since the norm N_{C}^{A} is non-metacyclic and $Z(C)$ is non-cyclic, C is either a non-metacyclic non-Dedekind $\overline{H A}_{2}$-group by Theorem 2 and $C=N_{C}^{A}=N_{G}^{A}$, or $C=H \cdot Q$ is a product of the quaternion group $H=\left\langle h_{1}, h_{2}\right\rangle$ of order 8 and a generalized quaternion group $Q=\langle t, q\rangle,|t|=2^{k}>8, t^{2^{k-1}}=q^{2}, q^{-1} t q=t^{-1}$, $[H, Q] \subseteq \omega(C)$ and $N_{C}^{A}=N_{G}^{A}=\left\langle t^{2^{k-2}}\right\rangle \times H$.

In the previous case N_{G}^{A} is a group of type (6) of Proposition 2, which contradicts the proved above.

Thus we will assume that $C=N_{G}^{A}$ and $G=N_{G}^{A} \cdot\langle y\rangle$, where $y^{2} \in N_{G}^{A}$. In this case N_{G}^{A} is a non-Dedekind $\overline{H A}_{2}$-group of exponent 4. So $|y|=8, y^{4}=a_{1} \in Z(G)$
by Lemma 4. It is also easy to prove that the norm N_{G}^{A} contains all elements of order 4 of the group G.

Let's consider the quotient-group

$$
\bar{G}=G / \omega(G) \cong \overline{N_{G}^{A}} \cdot\langle\bar{y}\rangle, \bar{y}^{2} \in \overline{N_{G}^{A}},
$$

where $|\bar{y}|=4$. Since $\omega(\bar{G})=\overline{N_{G}^{A}} \triangleleft \bar{G},\left|\overline{N_{G}^{A}}\right| \geq 8$ and \bar{y} induces an automorphism of order 2 on $\omega(\bar{G})$, there is an involution \bar{z} such that $\langle\bar{y}\rangle \cap\langle\bar{z}\rangle=\bar{E}$ and $[\bar{z}, \bar{y}]=1$ in $\omega(\bar{G})$. Turning to the preimages, we have $[z, y]=a$, where $a \in \omega(G)$. Since $\left[z^{2}, y\right]=1$, we conclude that $z^{2}=a_{1}$. Let $a \in\left\langle a_{1}\right\rangle$, then $\left[z, y^{2}\right]=1$ and $\left|y^{2} z\right|=2$. But in this case $y^{2} \in\langle z\rangle \omega(G)$ and the intersection $\langle\bar{y}\rangle \cap\langle\bar{z}\rangle$ is non-identity in the quotient-group \bar{G}. It is a contradiction. Thus, $a \notin\left\langle a_{1}\right\rangle$ and we can assume without loss of generality that $a=a_{2}$. Then $y^{-1} z y=z a_{2},\left[z, y^{2}\right]=z^{2}=a_{1}$, and $\left\langle y^{2}, z\right\rangle$ is the quaternion group, which is impossible if the norm N_{G}^{A} is a group of type (4) or (5) of Proposition 2.

Let N_{G}^{A} contain the quaternion group, i.e. N_{G}^{A} is a group of type (7) or (8) of Proposition 2. Then $N_{G}^{A}=H \cdot Q$ is a direct or a semidirect product of two quaternion groups H and $Q,[H, Q] \subseteq Q^{2}$.

Then in the group $G=N_{G}^{A} \cdot\langle y\rangle$ the subgroup $\left\langle y^{2}, a_{2}\right\rangle$ is Abelian non-cyclic by the inclusion $\omega\left(N_{G}^{A}\right) \subseteq Z\left(N_{G}^{A}\right)$ and therefore $\left\langle y^{2}, a_{2}\right\rangle$ is a normal subgroup in G. The subgroup $\widetilde{N_{G}^{A}}$ is elementary Abelian of order 8 in the quotient-group

$$
\widetilde{G}=G /\left\langle y^{2}, a_{2}\right\rangle \cong \widetilde{N_{G}^{A}} \lambda\langle\tilde{y}\rangle .
$$

Since \tilde{y} induces an automorphism of order 2 on $\widetilde{N_{G}^{A}}$, it is always possible to point out involutions $\widetilde{z_{1}}, \widetilde{z_{2}} \in \widetilde{N_{G}^{A}}$ which are permutable with \tilde{y}. Turning to preimages we get that $\left[z_{i}, y\right]=y^{2 m_{i}} a^{s_{i}}, i=1,2$.

If $s_{1}=s_{2}=1$, then $\left[z_{1} z_{2}, y\right]=y^{2 t}$. If $(t, 2)=1$, then $\left|y z_{1} z_{2}\right| \leq 4$ and $y \in N_{G}^{A}$ by the proved, which is impossible. Thus $t=2 t_{1}$ and $\left[z_{1} z_{2}, y\right]=y^{4 t_{1}} \in Z(G)$. But

$$
\left[z_{1} z_{2}, y^{2}\right]=\left[\left(z_{1} z_{2}\right)^{2}, y\right]=1
$$

by such conditions. From the second part of the equality we have $\left(z_{1} z_{2}\right)^{2}=a_{1}=y^{4}$ and $\left|z_{1} z_{2} y^{2}\right|=2$, which contradicts the structure of the norm N_{G}^{A}.

Thus we can assume that at least one of numbers $s_{i}=0$. But then $\left[z_{i}, y\right]=y^{2 m_{i}}$ and we again get a contradiction repeating the above argument. In this case $G=C$ and $\omega\left(N_{G}^{A}\right) \subseteq Z(G)$.

Theorem 3. G is a group of type β if and only if it is a group of one of the following types:

1) G is a non-metacyclic non-Hamiltonian $\overline{H A_{2}}$-group with a cyclic center, $G=N_{G}^{A}$;
2) $G=(\langle x\rangle \lambda\langle b\rangle) \lambda\langle c\rangle,|x|=2^{n}, n>3,|b|=|c|=2,[x, c]=x^{ \pm 2^{n-2}} b, \quad[b, c]=$ $[x, b]=x^{2^{n-1}}, N_{G}^{A}=\left(\left\langle x^{2}\right\rangle \times\langle b\rangle\right) \lambda\langle c\rangle ;$
3) $G=(\langle x\rangle \times\langle b\rangle) \lambda\langle c\rangle \lambda\langle d\rangle,|x|=2^{n}, n>2,|b|=|c|=|d|=2,[x, c]=[x, b]=$ $1,[b, c]=[c, d]=[b, d]=x^{2^{n-1}}, d^{-1} x d=x^{-1}, \quad N_{G}^{A}=\left(\left\langle x^{2^{n-2}}\right\rangle \times\langle b\rangle\right) \lambda\langle c\rangle ;$
4) $G=(\langle c\rangle \lambda H)\langle y\rangle, H=\left\langle h_{1}, h_{2}\right\rangle,\left|h_{1}\right|=\left|h_{2}\right|=4, h_{1}^{2}=h_{2}^{2}=\left[h_{1}, h_{2}\right],|c|=4$, $\left[c, h_{1}\right]=c^{2},\left[c, h_{2}\right]=1, y^{2}=h_{1},\left[y, h_{2}\right]=c^{2} h_{1}^{2},[y, c]=h_{2}^{ \pm 1}, N_{G}^{A}=\langle c\rangle \lambda H$.

Proof. Let a group G and its norm of Abelian non-cyclic subgroups satisfy the conditions of the theorem. Let's continue the proof of the theorem in the following lemmas.

Lemma 12. Let G be a finite 2-group and its norm N_{G}^{A} of Abelian non-cyclic subgroups be a group of type (10) of Proposition 2. Then all Abelian non-cyclic subgroups are normal in G and $G=N_{G}^{A}$.

Proof. Let N_{G}^{A} be a group of type (10) of Proposition 2, i.e.

$$
N_{G}^{A}=(H \times\langle a\rangle)\langle b\rangle,
$$

where $H=\left\langle h_{1}, h_{2}\right\rangle,\left|h_{1}\right|=\left|h_{2}\right|=4,|a|=2,|b|=8, b^{2}=h_{1},\left[h_{2}, b\right]=a,[a, b]=$ $\left[h_{1}, h_{2}\right]=h_{1}^{2}=h_{2}^{2}$. In particular, $\omega\left(N_{G}^{A}\right)=\left\langle h_{1}^{2}, a\right\rangle$ and $Z\left(N_{G}^{A}\right)=\left\langle h_{1}^{2}\right\rangle \subset Z(G)$.
N_{G}^{A} contains all elements of order 2 of the group G by Lemma 3 and $\omega\left(N_{G}^{A}\right)=$ $\omega(G)$. Let's denote $C=C_{G}(\omega(G))$. Then $[G: C]=2$ and $G=C\langle b\rangle, b^{2} \in C$. By the proved above, the lower layer $\omega\left(N_{G}^{A}\right)$ contains all involutions of the centralizer C, so the quotient-group $\bar{C}=C /\langle a\rangle$ contains only one involution by Lemma 4. Since \bar{C} is non-Abelian, \bar{C} is a quaternion 2-group:

$$
\bar{C} \cong \bar{Q}=\langle\bar{x}, \bar{y}\rangle,
$$

$|\bar{x}|=2^{n} \geq 4,|\bar{y}|=4, \bar{x}^{2 n-1}=\bar{y}^{2}, \bar{y}^{-1} \overline{x y}=\bar{x}^{-1}$.
Turning to the preimages and taking into account Lemma 4, we have that $x^{2^{n-1}}=$ $y^{2}=h_{1}^{2}, y^{-1} x y=x^{-1} a^{m}, m \in\{0,1\}$. If $m=1$, then $y^{-1} x y=x^{-1} a$ and $(x y)^{2}=$ $h_{1}^{2} a \notin\left\langle h_{1}^{2}\right\rangle$, which is impossible. Therefore $m=0, y^{-1} x y=x^{-1}$ and

$$
C=Q \times\langle a\rangle .
$$

We can assume, without loss of generality, that $H \subseteq Q, h_{1} \in\langle x\rangle,\left\langle h_{2}\right\rangle=\langle y\rangle$. If $|Q|>8$, then $h_{2} \notin N_{G}\left(\left\langle a, x h_{2}\right\rangle\right)$, which is impossible, because $h_{2} \in N_{G}^{A}$. Thus $Q=H, C=H \times\langle a\rangle \subset N_{G}^{A}$ and

$$
G=C\langle b\rangle=N_{G}^{A} .
$$

Lemma 13. If a finite 2-group G has the norm N_{G}^{A} of Abelian non-cyclic subgroups which is a group of type (3) of Proposition 2, then $G=N_{G}^{A}$.

Proof. Let a group G and its norm N_{G}^{A} satisfy the conditions of the lemma,

$$
N_{G}^{A}=(H \times\langle b\rangle) \lambda\langle c\rangle,
$$

where $H=\left\langle h_{1}, h_{2}\right\rangle,\left|h_{1}\right|=\left|h_{2}\right|=4,\left[h_{1}, h_{2}\right]=h_{1}^{2}=h_{2}^{2},|b|=|c|=2,[H,\langle b\rangle]=$ $[H,\langle c\rangle]=E,[b, c]=h_{1}^{2}$.

Suppose that $G \neq N_{G}^{A}$ and let's prove that N_{G}^{A} contains all involutions of the group G. Indeed, otherwise we have $\left\langle z, h_{1}^{2}\right\rangle \triangleleft G_{1}=\langle z\rangle N_{G}^{A}$ for any involution $z \in$ $G \backslash N_{G}^{A}$. Therefore $\left[G_{1}: C_{G_{1}}\left(\left\langle z, h_{1}^{2}\right\rangle\right)\right] \leq 2$ and $G_{1} \backslash\left\langle h_{1}^{2}\right\rangle$ contains an involution $y \neq h_{1}^{2}$ which is permutable with z. So,

$$
\langle y, z\rangle \cap N_{G}^{A}=\langle y\rangle \triangleleft N_{G}^{A},
$$

which is impossible. Hence all involutions of a group G are contained in N_{G}^{A}.
Suppose that an element x of order 4 exists in $G \backslash N_{G}^{A}$. By Lemma $4 x^{2}=h_{1}^{2}$. Thus any element a of order 4 of the norm N_{G}^{A} is not permutable with x, otherwise $|a x|=2$ and $x \in N_{G}^{A}$ by the proved above. Let's denote $G_{2}=\langle x\rangle N_{G}^{A}$ and consider the quotient-group $\overline{G_{2}}=G_{2} /\left\langle h_{1}^{2}\right\rangle$. Since $\overline{N_{G}^{A}}$ is an elementary Abelian group of order 16, normal in $\overline{G_{2}}$ and \bar{x} induces an automorphism of order 2 on $\overline{N_{G}^{A}}$, there exist involutions $\overline{y_{1}}, \overline{y_{2}} \in \overline{N_{G}^{A}},\left\langle\overline{y_{1}}\right\rangle \cap\left\langle\overline{y_{2}}\right\rangle=\bar{E}$, which are permutable with \bar{x}. Turning to the preimages we will have $\left[x, y_{i}\right] \in\left\langle h_{1}^{2}\right\rangle, i=1,2$. It is easy to prove that the group $\left\langle y_{1}, y_{2}\right\rangle$ contains an involution $y \neq h_{1}^{2}$ which is permutable with x. Then $\langle x, y\rangle \triangleleft G_{2}$ as an Abelian non-cyclic subgroup and

$$
G_{2}^{\prime} \subseteq\langle x, y\rangle \cap N_{G}^{A}=\left\langle y, h_{1}^{2}\right\rangle
$$

Let t be an arbitrary non-central involution of N_{G}^{A} which differs from y. Let's put

$$
[x, t]=y^{m} h_{1}^{2 k}, m, k \in\{0,1\} .
$$

Then $\left[x, t^{2}\right]=h_{1}^{2 m}$. On the other hand, $\left[x, t^{2}\right]=1$, therefore $m=0$ and $\left[\langle x\rangle, N_{G}^{A}\right] \subseteq\left\langle h_{1}^{2}\right\rangle$. However in this case the group G_{2} will contain an involution which does not belong to N_{G}^{A}, that contradicts the proved above. Therefore N_{G}^{A} contains all elements of order 4 of the group G.

According to the assumption $G \neq N_{G}^{A}$, we conclude that there is an element $x \in G \backslash N_{G}^{A},|x|=8$. Since $x^{2} \in N_{G}^{A},\left|x^{2}\right|=4$ and all cyclic subgroups of order 4 are normal in N_{G}^{A}, we have

$$
\left\langle x^{2}\right\rangle \triangleleft G_{3}=\langle x\rangle N_{G}^{A} .
$$

Let's consider the quotient-group $\overline{G_{3}}=G_{2} /\left\langle x^{2}\right\rangle$. Since $\overline{N_{G}^{A}}$ is a normal elementary Abelian group of order 8 and \bar{x} induces an automorphism of order 2 on it, there exist involutions $\overline{y_{1}}, \overline{y_{2}} \in \overline{N_{G}^{A}},\left\langle\overline{y_{1}}\right\rangle \cap\left\langle\overline{y_{2}}\right\rangle=\bar{E}$, which are permutable with \bar{x}. Turning to the preimages we get $\left[x, y_{i}\right] \in\left\langle x^{2}\right\rangle, i=1,2$. It is easy to check that $\left[x, y_{i}\right] \in\left\langle h_{1}^{2}\right\rangle$ and the group $\left\langle x^{2}, y_{1}, y_{2}\right\rangle$ contains an involution y which is permutable with x. Then $\langle x, y\rangle \triangleleft G_{3}$ as an Abelian non-cyclic subgroup and

$$
G_{3}^{\prime} \subseteq\langle x, y\rangle \cap N_{G}^{A}=\left\langle y, x^{2}\right\rangle .
$$

Let $[x, t]=x^{2 m} y^{k}$, where t is an arbitrary non-central involution of N_{G}^{A} which differs from y. Since N_{G}^{A} contains all elements of order $4,[x, t] \in\left\langle h_{1}^{2}\right\rangle$ by the condition $\left[x, t^{2}\right]=1$. But then $\left[x^{2}, t\right]=1$ and $x^{2} \in Z\left(G_{3}\right)$, which is impossible, because the norm N_{G}^{A} does not contain non-central elements of order 4. This contradiction proves that $G=N_{G}^{A}$.

Lemma 14. If a finite 2-group G has a non-Dedekind norm $N_{G}^{A} \neq G$ which is a group of type (1) of Proposition 2, then G is a group of one of types (2) or (3) of Theorem 3.

Proof. Let $G \neq N_{G}^{A}$ and

$$
N_{G}^{A}=(\langle a\rangle \times\langle b\rangle) \lambda\langle c\rangle,
$$

where $|a|=2^{n}, n \geq 2,|b|=|c|=2,[a, c]=[a, b]=1,[b, c]=a^{2^{n-1}}$. Since $N_{G}^{A} \triangleleft G$, the intersection $\overline{N_{G}^{A}} \cap Z(\bar{G}) \neq \bar{E}$ in the quotient-group $\bar{G}=G /\langle a\rangle$. We can assume without loss of generality that $\bar{b} \in Z(\bar{G})$. Then $\langle a, b\rangle \triangleleft G, \omega(\langle a, b\rangle)=\left\langle a^{2^{n-1}}, b\right\rangle \triangleleft G$.

Let's denote $C=C_{G}\left(\left\langle a^{2^{n-1}}, b\right\rangle\right)$. Then $C \triangleleft G,[G: C]=2$ and $G=C \lambda\langle c\rangle$, where $c \in N_{G}^{A},|c|=2$. By Lemma 4 the quotient-group $\bar{C}=C /\langle b\rangle$ has only one involution and \bar{C} is a cyclic group or a generalized quaternion group.

Let \bar{C} be cyclic, then its full preimage $C=\langle x\rangle \times\langle b\rangle$ is Abelian and

$$
[x, c] \in C \cap N_{G}^{A}=\langle a, b\rangle .
$$

Let's put $[x, c]=a^{m} b^{k}$. If $|[x, c]|=2$, then $G^{\prime} \subset\left\langle a^{2}\right\rangle$ and G is an $\overline{H A_{2}}$-group, contrary to the assumption. Thus $|[x, c]|>2$. If $|a|=4$, then $[x, c]=a^{ \pm 1} b$ by the condition $\left[x, c^{2}\right]=1$, so $(x c)^{2} \in Z(G)$ and $|x| \leq 8$. So $x^{2}=a^{ \pm 1} b$. However, $c \notin N_{G}\left(\left\langle a^{2}\right\rangle \times\langle x b c\rangle\right)$ by such conditions, i.e. $c \notin N_{G}^{A}$, which is impossible.

Let $|a|>4$, then $m=2^{n-2} m_{1}$, where $\left(m_{1}, 2\right)=1,(k, 2)=1$. Thus $[x, c]=$ $a^{ \pm 2^{n-2}} b,(x c)^{2}=x^{2} a^{ \pm 2^{n-2}} b$ and $(x c)^{2} \in Z(G)$. Since $Z(G)=\langle a\rangle$ and $|x|>|a|$ by the previous reasoning, $(x c)^{2}=a$. Let's denote $x c=y$. Then $|y|=2^{n+1}$, $[y, b]=y^{2^{n}},[y, c]=y^{ \pm 2^{n-1}} b$ and

$$
G=(\langle y\rangle \lambda\langle b\rangle) \lambda\langle c\rangle
$$

is a group of type (2) of Theorem 3.
Let \bar{C} be a generalized quaternion group $\bar{C}=\left\langle\overline{h_{1}}, \overline{h_{2}}\right\rangle$, where $\left|\overline{h_{1}}\right|=2^{n}, n \geq 2$, $\left|\overline{h_{2}}\right|=4,{\overline{h_{1}}}^{2^{n-1}}={\overline{h_{2}}}^{2},{\overline{h_{2}}}^{-1} \overline{h_{1} h_{2}}={\overline{h_{1}}}^{-1}$. Let h_{1} and h_{2} denote the preimages of elements $\overline{h_{1}}$ and $\overline{h_{2}}$, respectively. Since the center $Z(G)$ is cyclic, $h_{1}^{2^{n-1}}=h_{2}^{2}=a^{2^{n-1}}$, $h_{2}^{-1} h_{1} h_{2}=h_{1}^{-1} b^{m}, m \in\{0,1\}$, by Lemma 4 . If $m \neq 0$, then

$$
\left(h_{1} h_{2}\right)^{2}=h_{2}^{2} b=a^{2^{n-1}} b,
$$

which contradicts Lemma 4 . Thus $m=0, C=H \times\langle b\rangle, H=\left\langle h_{1}, h_{2}\right\rangle$ is a generalized quaternion group. We also note that $\langle a\rangle \subseteq\left\langle h_{1}\right\rangle$ by the condition $\langle a\rangle \triangleleft G$.

Since

$$
\left[h_{2}, c\right] \in\left\langle h_{2}, b\right\rangle \cap\langle b, c\rangle=\left\langle a^{2^{n-1}}, b\right\rangle
$$

and $\left[h_{2}, c^{2}\right]=1$, we conclude that $\left[h_{2}, c\right] \in\left\langle a^{2^{n-1}}\right\rangle$. Then one of the elements $h_{2} c$ or $h_{2} b c$ is of order 2 , and hence one of the subgroups $\left\langle h_{2} c, a^{2^{n-1}}\right\rangle$ or $\left\langle h_{2} b c, a^{2^{n-1}}\right\rangle$ is elementary Abelian. Since $\langle a\rangle \subseteq N_{G}^{A}$, the element a has to normalize these subgroups, which is possible only if $|a|=4$.

Based on the fact that $\left\langle h_{1} h_{2}\right\rangle \times\langle b\rangle$ is an Abelian non-cyclic subgroup, we have

$$
\left[h_{1} h_{2}, c\right] \in\left(\left\langle h_{1} h_{2}\right\rangle \times\langle b\rangle\right) \cap N_{G}^{A}=\left\langle a^{2}, b\right\rangle .
$$

It is easy to prove that $\left[h_{1} h_{2}, c\right] \in\left\langle a^{2}\right\rangle$ by Lemma 4 . It also follows that $\left[h_{1}, c\right] \in\left\langle a^{2}\right\rangle$. Thus $\left[H, N_{G}^{A}\right]=\left\langle a^{2}\right\rangle$.

Let's denote $B=\langle b, c\rangle$. Since B is a 2 -generated non-Abelian subgroup and the commutant $[B, G] \subseteq\left\langle a^{2}\right\rangle$ is of order 2, we have $G=B C_{G}(B)$ by [10]. We can assume without loss of generality that $H=C_{G}(B)$. If $|H|=8$, then G is an $\overline{H A_{2}}$-group, which contradicts the assumption. So $|H|>8$ and G is a group of type (3) of Theorem 3.

Lemma 15. If a finite 2-group G has the norm $N_{G}^{A} \neq G$ which is a group of type (9) of Proposition 2, then G is a group of type (4) of Theorem 3.

Proof. Let N_{G}^{A} be a group of type (9) of Proposition 2: $N_{G}^{A}=\langle c\rangle \lambda H$, where $H=\left\langle h_{1}, h_{2}\right\rangle,\left|h_{1}\right|=\left|h_{2}\right|=4, h_{1}^{2}=h_{2}^{2}=\left[h_{1}, h_{2}\right],|c|=2^{n}>2,\left[c, h_{1}\right]=c^{2^{n-1}}$, $\left[c, h_{2}\right]=1$.

Suppose that $N_{G}^{A} \neq G$. Since $\omega\left(N_{G}^{A}\right) \subset Z\left(N_{G}^{A}\right)$ and $\omega\left(N_{G}^{A}\right) \not \subset Z(G)$, we have $\omega(G)=\omega\left(N_{G}^{A}\right)$ by Lemma 2 and $G=C\langle y\rangle$, where $C=C_{G}\left(\omega\left(N_{G}^{A}\right)\right) \triangleleft G, y^{2} \in C$, $|y|>4$ by Lemma 4. The group C contains all Abelian non-cyclic subgroups of the group G, so

$$
N_{G}^{A} \subseteq N_{C}^{A} \subseteq C
$$

Thus C is a 2-group which has the norm of Abelian non-cyclic subgroups of type (9) of Proposition 2 and the non-cyclic center. We conclude that C is an $\overline{H A_{2}}$-group and

$$
C=N_{G}^{A}=\langle c\rangle \lambda H
$$

by Theorem 2. Thus

$$
G=C\langle y\rangle=(\langle c\rangle \lambda H)\langle y\rangle,|y|>4, y^{2} \in C .
$$

Let $|y|=2^{k}$. Since $y \notin C, \omega(G) \cap\langle y\rangle \subseteq Z(G)$. Let's denote $\left\langle a_{1}\right\rangle=\omega(G) \cap\langle y\rangle$ and consider the quotient-group

$$
\bar{G}=G / \omega(G) \cong \bar{C}\langle\bar{y}\rangle .
$$

Since the lower layer $\omega(\bar{C})$ is an elementary Abelian subgroup of order 8 and $\omega(\bar{C}) \triangleleft \bar{G}$, we conclude that $\omega(\bar{C})$ contains an involution \bar{z} such that $[\bar{z}, \bar{y}]=\overline{1}$,
$\langle\bar{z}\rangle \cap\langle\bar{y}\rangle=\bar{E}$. Turning to the preimages we put $[z, y]=a$, where $|a|=2, a \in \omega(G)$. Then $\left[z^{2}, y\right]=1$ and $z^{2}=a_{1} \in Z(G)$. If $a \in Z(G)$, then $\left[z, y^{2}\right]=1,\left|y^{2^{k-2}} z\right|=2$, which is impossible, because the elements of the order 4 of N_{G}^{A} do not have such property. Thus $a \notin Z(G)$ and $\left[z, y^{2}\right]=a_{1}$. It follows that $\left\langle z, y^{2}\right\rangle$ is the quaternion group and $|y|=8$.

If $|c|>4$, then $a_{1}=c^{2^{n-1}} \in Z(G)$ and $c^{2^{n-1}} \in\left\langle z, y^{2}\right\rangle$. But any quaternion group in N_{G}^{A} does not contain $c^{2^{n-1}}$. This means that $|c|=4, \quad c^{2} \notin Z(G)$ and $a_{1}=h_{1}^{2} \in\left\langle z, y^{2}\right\rangle$. Taking into account the structure of the quaternion subgroups in N_{G}^{A}, we have $\left\langle z, y^{2}\right\rangle=\left\langle h_{2} c^{2 m}, h_{1} h_{2}^{l} c^{s}\right\rangle$.

Suppose that $\left\langle y^{2}\right\rangle \triangleleft G$. Then we can assume that $y^{2}=h_{2} c^{2 m}, z=h_{1} h_{2}^{l} c^{s}$. Let's consider the quotient-group

$$
\widetilde{G}=G /\left\langle y^{2}\right\rangle \cong\left(\langle\widetilde{c}\rangle \lambda\left\langle\widetilde{h_{1}}\right\rangle\right) \lambda\langle\widetilde{y}\rangle .
$$

Since $\langle\widetilde{c}\rangle$ is a characteristic subgroup in $\widetilde{N_{G}^{A}},\langle\widetilde{c}\rangle \triangleleft \widetilde{G}$ and $[\widetilde{c}, \widetilde{y}] \in\left\langle\widetilde{c}^{2}\right\rangle$. Turning to the preimages we have $[c, y]=c^{2 r} y^{2 i}$. So $\left[c^{2}, y\right]=h_{2}^{2 i} \neq 1$ and $i \equiv 1(\bmod 2)$. It is easy to verify that in this case $|c y| \leq 4$, which contradicts the proved.

Thus $\left\langle y^{2}\right\rangle \nexists G$. Then we can assume that $y^{2}=h_{1} h_{2}^{l} c^{s}$ and $z=h_{2} c^{2 m}$, respectively. Let's consider the quotient-group

$$
\bar{G}=G / \omega(G) \cong\left(\langle\bar{c}\rangle \times\left\langle\overline{h_{1}}\right\rangle \times\left\langle\overline{h_{2}}\right\rangle\right)\langle\bar{y}\rangle .
$$

Without loss of generality, $\langle\bar{y}\rangle \cap \bar{N}_{G}^{A}=\left\langle\overline{h_{1}}\right\rangle$ and $\bar{z}=\overline{h_{2}}$. Then $[\bar{y}, \bar{z}]=\left[\bar{y}, \overline{h_{2}}\right]=\overline{1}$ according to the choice of \bar{z}. We get

$$
\left[\langle\bar{y}\rangle, \bar{N}_{G}^{A}\right] \subseteq \bar{N}_{G}^{A} \cap\left\langle\bar{y}, \overline{h_{2}}\right\rangle=\left\langle\bar{y}^{2}, \overline{h_{2}}\right\rangle=\bar{H}
$$

by the condition $\left\langle\bar{y}, \overline{h_{2}}\right\rangle \triangleleft \bar{G}$. Thus $\left[y, h_{2}\right]=c^{2 l} h_{1}^{2 s}$ and $[y, c]=c^{2 l_{1}} h_{1}^{m} h_{2}^{r}$. We have $l \not \equiv 0(\bmod 2)$ by the first equality and the condition $\left[y, c^{2}\right] \neq 1$. We have $m \equiv 0$ $(\bmod 2)$ and $r \not \equiv 0(\bmod 2)$ by the second equality and the condition $\left[y, c^{2}\right] \neq 1$. Thus $\left[y, h_{2}\right]=c^{2} h_{1}^{2 s}$ and $[y, c]=c^{2 l} h_{2}^{ \pm 1}$. Further $l_{1} \equiv s(\bmod 2)$, because $\left[y^{2}, c\right]=$ c^{2} 。

We can assume without loss of generality that

$$
G=C\langle y\rangle=(\langle c\rangle \lambda H)\langle y\rangle,
$$

where $H=\left\langle h_{1}, h_{2}\right\rangle,\left|h_{1}\right|=\left|h_{2}\right|=4, h_{1}^{2}=h_{2}^{2}=\left[h_{1}, h_{2}\right],|c|=4,\left[c, h_{1}\right]=c^{2}$, $\left[c, h_{2}\right]=1, y^{2}=h_{1},\left[y, h_{2}\right]=c^{2} h_{1}^{2},[y, c]=h_{2}^{ \pm 1}$. In this group all Abelian non-cyclic subgroups are contained in $\langle c\rangle \lambda H$ and are normalized by this subgroup. At the same time $y \notin N_{G}^{A}$, because $y \notin N_{G}\left(\left\langle c, h_{1}^{2}\right\rangle\right)$.

Theorem is proved.
Corollary 7. Any group G of type β is a cyclic or metacyclic extension of the norm N_{G}^{A}.

5 Acknowledgment

The authors would like to thank the referees for their very useful comments which improved the paper.

References

[1] Baer R. Der Kern, eine Charakteristische Untergruppe. Comp. Math., 1934, 1, 254-283.
[2] Ballester-Bolinches A., Cossey J., Zhang L. Generalised norms in finite soluble groups. Journal of Algebra, 2014, 402(15), 392-405.
[3] Gong L., Zhao L., Guo X. On the Generalized Norm of a Finite Group. Journal of Algebra and its Applications, 2016, 15, no. 1, 1650008-9, 9 pp.
[4] Lia Sh., Shenb Zh. On the intersection of the normalizers of derived subgroups of all subgroups of a finite group. Journal of Algebra, 2010, 323, 5, 1349-1357.
[5] Lukashova T. D. Finite 2-groups with non-Dedekind norm of non-cyclic subgroups. Proceedings of Francisk Scorina Gomel State University, 2001, 6, 3, 139-150.
[6] Lyman F. M. 2-groups with invariant non-cyclic subgroups. Mathematical Notes, 1968, 4, 1, 75-83.
[7] Lyman F. M. p-groups, all Abelian non-cyclic subgroups of which are invariant. Doklady AN USSR, 1968, 8, 696-699.
[8] Lyman F. M., Lukashova T. D., Drushlyak M. G. On finite 2-groups with non-Dedekind norm of Abelian non-cyclic subgroups. Matematychni Studii, 2016, 46, 1, 20-28.
[9] Shen Z., Shi W., Zhang J. Finite non-nilpotent generalizations of Hamiltonian groups. Bull. Korean. Math. Soc., 2011, 48, 6, 1147-1155.
[10] Sheriev V. A. Finite 2-groups with complemented non-invariant subgroups. Siberian Math. Journal, 1967, 8, 195-213.
[11] Wang J. Finite Groups with a Cyclic Norm Quotient. Bull. Korean Math. Soc., 2007, 53, 2, 479-486.

Fedir Lyman
Herasyma Kondratieva, 134, ap. 64, Sumy, 40021, Ukraine
E-mail: mathematicsspu@gmail.com
Tetyana Lukashova
Kotlyarevskoho, 2/7, ap.1, Sumy, 40013, Ukraine
E-mail: tanyalukashova@gmail.com
Marina Drushlyak
Lysenko, 12, ap.71, Sumy, 40013, Ukraine
E-mail: marydru@fizmatsspu.sumy.ua

