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Finite 2-groups with a non-Dedekind non-metacyclic

norm of Abelian non-cyclic subgroups
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Abstract. The authors study finite 2-groups with non-Dedekind non-metacyclic
norm NA

G of Abelian non-cyclic subgroups depending on the cyclicness or the non-
cyclicness of the center of a group G. The norm NA

G is defined as the intersection
of the normalizers of Abelian non-cyclic subgroups of G. It is found out that such
2-groups are cyclic extensions of their norms of Abelian non-cyclic subgroups. Their
structure is described.
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1 Introduction

One of the main directions in group theory is the study of the impact of charac-
teristic subgroups on the structure of the whole group. Such characteristic subgroups
include different Σ-norms of a group. A Σ-norm is the intersection of the normal-
izers of all subgroups of a system Σ (assuming that the system Σ is non-empty).
It is clear that when the Σ-norm coincides with a group, then all subgroups of the
system Σ are normal in the last one.

For the first time, R. Baer [1] considered the Σ-norm as a proper subgroup of a
group in 1935 for the system of all subgroups of this group. He called it the norm
of a group and denoted by N(G). Narrowing the system of subgroups one can get
different Σ-norms which can be considered as generalizations of the norm N(G).
Recently the interest in studying the Σ-norms does not decrease as evidenced by the
series of works [2–4,9, 11].

If Σ is the system of all Abelian non-cyclic subgroups, then such a Σ-norm will
be called the norm of Abelian non-cyclic subgroups and denoted by NA

G . Thus the
norm NA

G of Abelian non-cyclic subgroups of a group G is the intersection of the
normalizers of all Abelian non-cyclic subgroups of a group G, assuming that the
system of such subgroups is non-empty.

Here we improve and extend some earlier results [8].

2 Preliminary Results

In a group G which coincides with the norm NA
G all Abelian non-cyclic subgroups

(assuming the existence of at least one such a subgroup) are normal. Non-Abelian
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groups with this property were called HA-groups (HA2-groups in the case of 2-
groups) [7].

Proposition 1. [7] A non-Hamiltonian HA2-group does not contain an elementary
Abelian subgroup of order 8.

Proposition 2. [7] Finite non-Hamiltonian HA2-groups are groups of the following
types:

1) G = (〈a〉 × 〈b〉) ⋋ 〈c〉, where |a| = 2n, n > 1, |b| = |c| = 2, [a, b] = [a, c] = 1,
[b, c] = a2n−1

;

2) G = 〈a〉 ⋋ 〈b〉, where |a| = 2n, |b| = 2m, n ≥ 2, m ≥ 1, [a, b] = a2n−1
;

3) G = (H × 〈b〉) ⋋ 〈c〉, where H = 〈h1, h2〉, |h1| = |h2| = 4, h2
1 = h2

2, |b| = |c| = 2,
[h1, h2] = h2

1, [H, 〈b〉] = [H, 〈c〉] = E, [b, c] = h2
1;

4) G = (〈a〉 × 〈b〉)〈c〉, where |a| = |b| = |c| = 4, c2 = a2b2, [c, b] = c2, [c, a] = a2;

5) G = (〈a〉 × 〈b〉)〈c〉〈d〉, where |a| = |b| = |c| = |d| = 4, c2 = d2 = a2b2, [a, c] =
[d, c] = a2, [b, d] = b2, [c, b] = [d, a] = c2;

6) G = H × 〈c〉, where H is the quaternion group, |c| = 2n, n ≥ 2;

7) G = H × Q, where H and Q are the quaternion groups;

8) G = (H × 〈b〉)〈c〉, where H = 〈h1, h2〉, |h1| = |h2| = |b| = |c| = 4, [h1, h2] = h2
1 =

h2
2, [H, 〈b〉] = [H, 〈c〉] = E, c2 = b2h2

1, [b, c] = b2;

9) G = (〈h2〉 × 〈c〉)〈h1〉, where |h1| = |h2| = 4, [h1, h2] = h2
1 = h2

2, |c| = 2n > 2,
[c, h1] = c2n−1

;

10) G = (H × 〈b〉)〈c〉, where H = 〈h1, h2〉, |h1| = |h2| = 4, |b| = 2, |c| = 8,
[b, c] = [h1, h2] = h2

1 = h2
2, c2 = h1, [h2, c] = b;

11) G = 〈a〉〈b〉, where |a| = 8, |b| = 2n > 2, a4 = b2n−1
, a−1ba = b−1.

It is clear that the subgroup NA
G is characteristic and contains the center Z(G)

of the group G.

To reduce the presentation, a finite 2-group with non-Dedekind non-metacyclic
norm NA

G of Abelian non-cyclic subgroups will be called a group of type α if the
center Z(G) of the group G is non-cyclic, and a group of type β if the center Z(G)
of the group G is cyclic.

The following corollary immediately follows from Proposition 2.

Corollary 1. If G is a group of type α and G = NA
G , then NA

G is a group of one of
the types (4)-(9) of Proposition 2. If G is a group of type β and G = NA

G , then NA
G

is a group of one of the types (1), (3), (10) of Proposition 2.

It turns out that there exist groups such that the center Z(NA
G ) of the norm

NA
G of the group G is non-cyclic but the center Z(G) of the group G is cyclic. The

following example shows it.
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Example 1. G = (〈b〉 ⋋ H) 〈y〉, where |b| = 4, H = 〈h1, h2〉, |h1| = 4, [h1, h2] =
h2

1 = h2
2, [b, h2] = 1, y2 = h1, [y, h2] = b2h2

1, [y, b] = h2.
In this group all Abelian non-cyclic subgroups are contained in the group 〈b〉⋋H

and are normal in it. So it is easy to verify that NA
G = 〈b〉 ⋋ H and Z(NA

G ) =〈
b2

〉
×

〈
h2

1

〉
is non-cyclic. At the same time Z(G) =

〈
h2

1

〉
is cyclic.

Lemma 1. If Z is a central non-cyclic subgroup of a group G, then NA
G ⊆ N(G) in

the quotient-group G/Z = G, where N(G) is the norm of the group G.

Proof. It suffices to show that the group NA
G normalizes every cyclic subgroup of

the group G = G/Z.
Let x ∈ G. Then the full preimage of the subgroup 〈x〉 in the group G is the

Abelian non-cyclic subgroup 〈x,Z〉. Therefore, NA
G ⊆ NG(〈x,Z〉). In the quotient-

group G
[NA

G ⊆ NG(〈x,Z〉) ⊆ NG(〈x〉)],

thus NA
G ⊆ N(G).

Let’s denote the lower layer of a group G by ω(G). It is the subgroup generated
by all elements of prime order of the group G.

Lemma 2. If the norm NA
G of Abelian non-cyclic subgroups of a finite 2-group G is

non-Dedekind non-metacyclic and its lower layer ω(NA
G ) is an elementary Abelian

subgroup of order 4, then NA
G contains all involutions of the group G and ω(NA

G ) =
ω(G).

Proof. Let a group G and its norm NA
G of Abelian non-cyclic subgroups satisfy the

conditions of the lemma. Then NA
G is a group of one of types (4)-(10) of Propo-

sition 2. Since ω(NA
G ) � NA

G and the subgroup ω(NA
G ) is characteristic in NA

G ,
ω(NA

G ) � G. Therefore ω(NA
G )

⋂
Z(G) 6= E.

Let ω(NA
G ) = 〈a1〉×〈a2〉, |a1| = |a2| = 2, a1 ∈ Z(G) for the definiteness. Suppose

that G contains an involution x /∈ NA
G . Then the subgroup 〈a1, x〉 is Abelian and

normal in the group G1 = 〈x〉NA
G . Since [G1 : CG1(〈a1, x〉)] ≤ 2, [y2, x] = 1

for an arbitrary element y ∈ NA
G . If NA

G is a group of one of types (4)-(9) of

Proposition 2, then [(NA
G )

2
, 〈x〉] = [ω(NA

G ), 〈x〉] = E. Therefore 〈x〉 � G1 as the
intersection of normal subgroups 〈a1, x〉 and 〈a2, x〉. Thus G1 = 〈x〉 × NA

G is a non-
Hamiltonian HA2-group which contains an elementary Abelian subgroup of order
8, which contradicts Proposition 1. So, in this case ω(NA

G ) = ω(G).
Let NA

G be a group of type (10) from Proposition 2. Then Z(NA
G ) =

〈
h2

1

〉
, where

h1 ∈ H, |h1| = 4 and h2
1 = a1 ∈ Z(G). By the proved above for the involution:

[〈x〉 , NA
G ] ⊆ 〈a1〉 =

〈
h2

1

〉
.

Therefore [x, b2] = [x, h1] = 1. If [x, h2] = 1 then 〈x, h2〉
⋂

NA
G = 〈h2〉 � NA

G , which
is impossible. Thus, [x, h2] = h2

1 and |xh2| = 2. Since xh2 /∈ NA
G , [xh2, b] ∈

〈
h2

1

〉
,

[xh2, b
2] = [xh2, h1] = 1.

On the other hand, [xh2, h1] = [h2, h1] = h2
1 6= 1. The contradiction proves that

ω(NA
G ) = ω(G).
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Corollary 2. If the norm NA
G of Abelian non-cyclic subgroups of a finite 2-group G is

non-Dedekind non-metacyclic and has the non-cyclic center Z(NA
G ), then ω(NA

G ) =
ω(G).

Lemma 3. If the norm NA
G of Abelian non-cyclic subgroups of a finite 2-group G

is non-Dedekind, has the non-cyclic center and the non-central in G lower layer
ω(NA

G ), then G = C 〈y〉, where C = CG(ω(NA
G )), C � G, |y| > 4, y2 ∈ C. In this

case every Abelian non-cyclic subgroup of a finite 2-group G is contained in C and
NA

G = NA
C ⊆ C.

Proof. By the condition of the lemma the norm NA
G is a group of one of the types

(4)-(9) of Proposition 2. In each of these cases ω(NA
G ) is an elementary Abelian

subgroup of order 4 and ω(NA
G ) 6⊂ Z(G) according to the condition of the lemma.

Let’s denote C = CG

(
ω(NA

G )
)
. Since ω(NA

G ) ⊳ G,C ⊳ G, [G : C] = 2. Thus
G = C 〈y〉, where y2 ∈ C.

Since ω(NA
G ) ⊆ Z(NA

G ), NA
G ⊆ C and y /∈ NA

G . By Lemma 2 ω(NA
G ) = ω(G),

so |y| > 2. Let |y| = 4, then the subgroup 〈y〉ω(G) is a dihedral group of order
8. Since 〈y〉ω (G) = 〈y, b〉, we have |yb| = 2. But yb ∈ ω (G) and y ∈ ω (G) by
such conditions, which is impossible. Thus |y| > 4. Taking into account that every
Abelian non-cyclic subgroup contains ω(NA

G ), we conclude that it is contained in C.
Therefore NA

G = NA
C ⊆ C.

Lemma 4. Let G be a group of type β and the center Z(NA
G ) is cyclic and con-

tains an involution a. Then the element a is contained in every cyclic subgroup of
composite order of the group G.

Proof. Let x be an arbitrary element of the group G, |x| = 2k, k > 1. Let 〈x〉∩〈a〉 =
E and a ∈ Z(NA

G ), |a| = 2. Then [x, a] = 1 and 〈x, a〉⊳G1 = 〈x〉NA
G . Since

〈
x2

〉
⊳G1

and
〈
x2k−1

〉
⊳ G1, we have x2k−1

∈ Z(G1).

If x2k−1
/∈ NA

G , then for an arbitrary element y ∈ NA
G 〈y〉 ×

〈
x2k−1

〉
⊳ G1,

(〈y〉 ×
〈
x2k−1

〉
) ∩ NA

G = 〈y〉 ⊳ NA
G .

Thus the norm NA
G is Dedekind, which is impossible. Then x2k−1

∈ NA
G , x2k−1

∈
Z(NA

G ), a ∈ Z(NA
G ) and Z(NA

G ) is non-cyclic, which contradicts the condition. Thus,
〈x〉 ∩ 〈a〉 6= E and a ∈ 〈x〉.

3 Finite 2-groups with a non-cyclic center and a non-Dedekind
non-metacyclic norm of Abelian non-cyclic subgroups (groups
of type α)

The norm NA
G of Abelian non-cyclic subgroups is closely related to the norm

NG of non-cyclic subgroups. The last one is the intersection of the normalizers of
all non-cyclic subgroups of a group G and was studied in [5] for the case of finite
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2-groups. If G = NG, then all non-cyclic subgroups are normal in the group G. Such
groups were studied in [6] and were called H-groups.

In the general case NG ⊆ NA
G . However, if every non-cyclic subgroup is covered

by Abelian non-cyclic subgroups, then NG = NA
G . In particular, we obtain the

following.

Theorem 1. If G is a group of type α and does not contain the quaternion group,
then NA

G = NG.

Proof. Since the center of the group G is non-cyclic, ω(G) = ω(NA
G ) by Corollary 2.

Taking into account that the group G does not contain the quaternion group and
has a non-cyclic center, every non-cyclic subgroup contains the lower layer ω(G).
Therefore 〈x, ω(G)〉 is an Abelian non-cyclic subgroup for any element x of an arbi-
trary non-cyclic subgroup. Thus, every non-cyclic subgroup is covered by Abelian
non-cyclic subgroups and NA

G = NG.

Lemma 5. Any group of type α of exponent 4 is an HA2-group.

Proof. Let a group G satisfy the conditions of the lemma. Then ω(NA
G ) = ω(G) by

Corollary 2 and ω(G) is a central elementary Abelian group of order 4.
The quotient-group G = G/ω(G) is a group of exponent 2. Thus G is Abelian

and G′ ⊆ ω(G). Since every Abelian non-cyclic subgroup of a group G contains
ω(G), every such subgroup is normal in G and G is an HA2-group.

Corollary 3. Let G be a group of type α. If the group G contains elements of order
4 which are not contained in the norm NA

G , then expG > 4.

Lemma 6. Let G be a group of type α. If an element x ∈ G\NA
G , |x| = 4 exists,

then the subgroup G1 = 〈x〉NA
G is an HA2-group.

Proof. Let x ∈ G\NA
G , |x| = 4. By Corollary 2 ω(NA

G ) = ω(G) ⊆ Z(G). Therefore
〈x〉ω(G) � G1 = 〈x〉NA

G and

G′

1 ⊆ 〈x〉ω(G) ∩ NA
G = ω(G).

Since every Abelian non-cyclic subgroup of the group G1 contans ω(G), it is normal
in G1. Thus G1 is an HA2-group.

Let’s denote a subgroup which is generated by the elements of order not exceeding
2m by ωm(G). In particular, ω1(G) = ω(G) is the lower layer of the group G.

Corollary 4. Let G be a group of type α. If the norm NA
G is a group of types (5),

(7), (8), (6) (n > 2) and (9) (n > 2) of Proposition 2, then ω2(N
A
G ) = ω2(G) and

ω2(N
A
G ) is a group of exponent 4.

Proof. Suppose that the conditions of the corollary are satisfied and an element
x ∈ G\NA

G , |x| = 4 exists. Then G1 = 〈x〉NA
G is an HA2-group by Lemma 5. Taking

into account the structure of the norm NA
G and the description of HA2-groups we

get a contradiction. Thus ω2(N
A
G ) = ω2(G).
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Lemma 7. If ω2(N
A
G ) = ω2(G) in a group G of type α, then the group G does not

contain a generalized quaternion group of order greater than 8. If in this case the
group G contains the quaternion group H, then H ⊂ NA

G . Moreover NG = NNA

G

.

Corollary 5. Let G be a group of type α and its norm NA
G does not contain the

quaternion group. If ω2(N
A
G ) = ω2(G), then the group G does not contain the

quaternion group and NA
G = NG.

Theorem 2. G is a group of type α if and only if it is a group of one of the following
types:

1) G is a non-metacyclic non-Dedekind HA2-group with a non-cyclic center, G =
NA

G ;

2) G = H · Q, where H is the quaternion group of order 8, Q is a generalized
quaternion group, H = 〈h1, h2〉, |h1| = |h2| = 4, [h1, h2] = h2

1 = h2
2, Q = 〈y, x〉,

|y| = 2n, n ≥ 3, |x| = 4, y2n−1
= x2, x−1yx = y−1, H ∩ Q = E, [Q,H] ⊆ 〈x2, h2

1〉,
NA

G = H × 〈y2n−2
〉.

Proof. The sufficiency of the conditions of the theorem is easy to verify directly.
Let’s prove the necessity of the conditions of the theorem.

Since the center Z(G) is non-cyclic, ω(NA
G ) ⊆ Z(G) and ω(NA

G ) = ω(G) by
Lemma 2. By the condition of the theorem and Corollary 1 the norm NA

G is a group
of one of the types (4)-(9) of Proposition 2.

Let’s continue the proof of the theorem depending on the structure of the norm
NA

G .

Lemma 8. Let G be a group of type α and let its norm NA
G be a group of one of

types (4), (5), (7), (8) and (9) (n = 2) of Proposition 2. Then G = NA
G .

Proof. Suppose that G 6= NA
G . Let’s prove that G is a group of exponent 4. Let an

element x ∈ G, |x| = 8, exist.
If in this case the norm NA

G is a group of one of types (5), (7), (8) of Proposition 2,
then ω2(N

A
G ) = ω2(G) by Corollary 4 and x2 ∈ NA

G .
Let the norm NA

G be a group of one of types (4) or (9) (n = 2) of Proposition 2.
Suppose that x2 /∈ NA

G . Since 〈x〉ω(G) � G1 = 〈x〉NA
G and

[〈x〉, NA
G ] ⊆ 〈x〉ω(G) ∩ NA

G = ω(G),

we have 〈x2〉�G1, [〈x2〉, NA
G ] = E and x2 ∈ Z(G1). But in this case ω(G1) 6= ω(NA

G ),
which is impossible by Lemma 2. Thus x2 ∈ NA

G ,

[〈x〉, ω(G)] ⊆ 〈x〉ω(G) ∩ NA
G = 〈x2〉ω(G).

Let us consider the quotient-group G1 = G1/ω(G). By the proved above G1
′
⊆

〈x2〉. If G1
′
6= E and x /∈ Z(G1), 〈x〉 � G1, then [G1 : CG1

(〈x〉)] = 2. Thus NA
G

contains an element y of order 2 which is permutable with x. Therefore 〈x, y〉 is a
dihedral group of order 8 and |xy| = 2. Since ω(G) is a central non-cyclic subgroup,
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NA
G ≤ N(G) by Lemma 1. Therefore 〈xy〉 � G1. Thus G1 is Abelian, which is

impossible.

Therefore G1
′

= E, G′
1 ⊆ ω(NA

G ) and G1 is an HA2-group which contains a
central cyclic subgroup of order 4, which contradicts the structure of the norm NA

G .
Thus G is a group of exponent 4. G is an HA2-group by Lemma 5.

Lemma 9. Let G be a group of type α and its norm NA
G is a direct or a semi-direct

product of a normal cyclic group of order greater than 4 and the quaternion group.
Then G = NA

G .

Proof. Let the norm NA
G satisfies the conditions of the lemma. It is a group of

type (6) or (9) (n > 2). Suppose that G 6= NA
G . Since the center of the group G

is non-cyclic, then ω(NA
G ) = ω(G) by Lemma 2. Moreover, ω2(N

A
G ) = ω2(G) by

Corollary 4.

If the norm NA
G is a group of type (6) (n > 2), then NA

G = NG by Lemma 7. By
Theorem 2 [5] G is an HA2-group and it is a semi-direct product of a normal cyclic
subgroup of order greater than 4 and the quaternion group. Thus G = NA

G , which
is impossible.

Let the norm NA
G be a group of type (9) (n > 2). Then NA

G contains all quater-
nion groups by Lemma 7 and the non-cyclic norm NG of a group G coincides with
the non-cyclic norm of the subgroup NA

G , NG = NNA

G

= 〈c2〉 × H, |c2| ≥ 4. By

Theorem 2 [5] G is an HA2-group and G = NA
G , which is impossible.

Lemma 10. Let G be a group of type α and let its norm NA
G be a group of the type

NA
G = H × 〈c〉, where H is the quaternion group, |c| = 4. Then either G = NA

G , or
G is a group of type (2) of Theorem 2.

Proof. By Lemma 2 ω(NA
G ) = ω(G). If NA

G = ω2(G), then NG = NNA

G

= NA
G by

Lemma 7. By Theorem 2 [5] G is an HA2-group and G = NA
G .

Let assume that NA
G 6= ω2(G) and an element x ∈ G\NA

G , |x| = 4 exists. By
Lemma 6 G1 = 〈x〉NA

G is an HA2-group of exponent 4. If [x, c] = 1, then G1 contains
a central cyclic subgroup 〈c〉 of order 4, which is impossible by Proposition 2, because
|ω2(G1)| = 64. Thus c /∈ Z(G).

If 〈c〉⊳G and 〈c〉 is a non-central subgroup, then [G : C] = 2, where C = CG(〈c〉).
Let’s show that under these conditions all elements of order greater than 4 are
permutable with the element c. Let y ∈ G\NA

G , |y| = 2s, s > 2. If 〈y〉∩NA
G ⊆ ω(G),

then

[〈y〉, NA
G ] ⊆ 〈y〉ω(G) ∩ NA

G = ω(G)

and [〈y2〉, NA
G ] = E. But in this case ω(G) 6= ω(NA

G ), which contradicts Lemma 2.

Therefore, 〈y〉 ∩ NA
G = 〈y2s−2

〉.

Let y1 = y2s−3
, y2

1 = cmhk, where h ∈ H. Let us consider G2 = 〈y1〉N
A
G . Since

[〈y1〉, N
A
G ] ⊆ 〈y1〉ω(G) ∩ NA

G = 〈y2
1〉ω(G),
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we have 〈y2
1〉 � G2. Thus either m ≡ 0 (mod 2) and (k, 2) = 1, or k ≡ 0 (mod 2)

and (m, 2) = 1.
In the first case y2

1 = c2m1hk, (k, 2) = 1. Let consider the quotient-group G =
G/ω(G). By the proved above,

[〈y1〉,N
A
G ] ⊆ 〈y1〉 ∩ NA

G = 〈y2
1〉 = 〈h〉.

Let h1 be an element of the subgroup H which is not permutable with h. Then

[〈h1〉, 〈y1〉] = 〈y2l
1 〉 = 〈h

kl
〉. If (l, 2) = 1, then 〈y1, h1〉 is a dihedral group and

|y1h1| = 2. By Lemma 1 〈y1h1〉 � G2 and therefore G2 = NA
G × 〈y1h1〉. Hence

[y1h1, h1] = [y1, h1] = 1, which is impossible. Thus (l, 2) 6= 1 and [h1, y1] = 1. But
then [h1, y1] ∈ ω(NA

G ), [h1, y
2
1] = [h1, h] = 1, which contradicts the choice of h1.

Thus y2
1 = cmh2k1 , where (m, 2) = 1, and [y, c] = 1. Hence the elements of order

greater then 4 are contained in the centralizer C.
Let x /∈ C. Then |x| = 4. Taking into account [G : C] = 2, we conclude that

G = C〈x〉, where x2 ∈ ω(G), [〈x〉, NA
G ] ⊆ ω(G). By the proved above, the norm NA

G

contains all elements of order 4 of the centralizer C, i.e. NA
G = ω2(C). If exp C = 4,

then NA
G = C and G = NA

G · 〈x〉. By Lemma 6 G is an HA2-group which does not
coincide with NA

G , which is impossible. Thus exp C > 4.
Since the norm NA

C of the subgroup C contains NA
G and c ∈ Z(C), the norm NA

C

is a group of one of the types:

1) NA
C = 〈y〉 × H, |y| = 2n, n ≥ 3, y2n−2

= c;

2) NA
C = 〈y〉 ⋋ H, [〈y〉,H] = 〈y2n−1

〉, |y| = 2n, n ≥ 3, y2n−2
= c.

By Lemma 9, NA
C = C. Let’s consider each of these cases separately.

(1) Let C = NA
C = 〈y〉 × H, then G = (〈y〉 × H)〈x〉, x2 ∈ C. Let’s consider the

quotient group G = G/ω(G) ∼= (〈y〉×H)〈x〉. Since 〈y〉 = Z(C), the subgroup 〈y, x〉
contains a cyclic subgroup of index 2. Therefore the following relations are possible
between x and y.

If [y, x] = 1, then G′ ⊆ ω(G) and G is an HA2-group, which contradicts G 6= NA
G .

If x−1yx = y−1y2n−2
, n ≥ 4, then turning to the preimages x−1yx = y−1cz, where

z ∈ ω(G). Therefore x−2yx2 = x−1y−1czx = yc−2, which contradicts x2 ∈ Z(G).
If x−1yx = yy2n−2

, where n ≥ 4, then |y| ≥ 16, x−1yx = ycz, where z ∈ ω(G),
and x−1y2x = y2c2. Since c ∈ 〈y〉, y2 = c and |y| = 8, which is impossible.

Thus G = H ·Q is a group of the type (2) of Theorem 2, where one of the groups
H or Q is a generalized quaternion group of order greater than 8, and the other one
is the quaternion group, [H,Q] ⊆ ω(G).

(2) Let C = NA
C = 〈y〉 ⋋ H, [〈y〉,H] = 〈y2n−1

〉, |y| = 2n, n ≥ 3, y2n−2
= c.

Let us consider the quotient-group

G = G/ω(G) ∼= (〈y〉 ⋋ H)〈x〉,

where [H, 〈x〉] = E, [〈y〉, 〈x〉] ⊆ 〈y,H〉. Let x−1yx = yαh
β
, where h ∈ H. Then by

the condition [x2, y] = 1, we have

x−2yx2 = (yαh
β
)αh

β
= yα2

h
β(α+1)

= y.
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If β ≡ 1 (mod 2), then α2 ≡ 1 (mod 2n−1) and α = ±1 + 2n−1t or α = ±1 + 2n−2t.
It is easy to verify that in each case [h1, (xy)2] 6= 1 for the element h1 ∈ H which
is not permutable with h. On the other hand, [h1, x] ∈ ω(G), [h1, y] ∈ ω(G). Thus,
[h1, xy] ∈ ω(G) and [h1, (xy)2] = 1. We get a contradiction.

Thus β ≡ 0 (mod 2) and 〈y〉 � G. Repeating the above proof we get that
x−1yx = y−1. Then G = 〈y〉G1, where G1 = NA

G 〈x〉 is an HA2-group, which is a
direct or a semi-direct product of two quaternion groups. Thus G = H ·Q is a group
of the type (2) of Theorem 2.

Suppose that 〈c〉 ⋪ G. Hence [〈c〉, G] ⊆ ω(G).

Let x be an element of G, |x| ≥ 8. If 〈x〉
⋂

NA
G ⊆ ω(G), then

[〈x〉, NA
G ] ⊆ 〈x〉ω(G)

⋂
NA

G = ω(G)

and [〈x2〉, NA
G ] = E. Hence G1 = 〈x2〉NA

G is an HA2-group which has two central
cyclic subgroups 〈x〉 and 〈c〉 of order 4, which contradicts the description of HA2-

groups. Thus, x2k

= cαhβ (where either α or β is not divisible by 2) and

[〈x〉, NA
G ] ⊆ 〈x2k

〉ω(G).

Since 〈x2〉 ⊳ G1, either α ≡ 0 (mod 2) and β ≡ 1 (mod 2), or α ≡ 1 (mod 2) and
β ≡ 0 (mod 2).

If α ≡ 0 (mod 2) and β ≡ 1 (mod 2), then [〈x〉, NA
G ] ⊆ ω(G) and [x2, h1] = 1.

On the other hand, [x2, h1] = [c2αhβ, h1] = [hβ , h1] 6= 1. We get a contradiction.

Thus x2k

= cαh2β , where (α, 2) = 1. Hence [x, c] = 1 and 〈x〉
⋂

NA
G = 〈ch2β〉, where

β ∈ {0, 1}.

Let denote N = NG(〈c〉). It is clear that N ⊇ NA
G and for any element y ∈ G

|y| ≥ 8, y ∈ N . If N 6= G, then an element a ∈ G\N exists, |a| = 4, a2 ∈ ω(G),
[〈a〉, NA

G ] ⊆ ω(G).

Let a, b /∈ N . Then [a, c] = c2rh2, [b, c] = c2sh2. Hence [ab, c] ∈ 〈c〉 and ab ∈ N .
It is easy to verify that a−1N = aN = bN . Hence [G : N ] = 2 and N ⊳G, G = N〈a〉,
a2 ∈ ω(NA

G ).

By the proved above, the subgroup N is a product of the quaternion group
of order 8 and a generalized quaternion group of order equal or greater than 16:
N = H · Q, |H| = 8, |Q| ≥ 16, H = 〈h1, h2〉, Q = 〈y, x〉, |y| = 2n > 4, y2n−2

= c,
[H,Q] ⊆ ω(G).

If |y| > 8, then N ′ = 〈y2〉 × 〈h2〉 � G and 〈y4〉 � G, 〈c〉 � G, which contradicts
the assumption. Thus, |y| = 8.

Let us consider the quotient-group

G/NA
G

∼= (〈y〉 × 〈x〉)〈a〉,

|y| = |x| = |a| = 2. If G/NA
G is non-Abelian, then it is a dihedral group and

contains an element 〈at〉 of order 4, where t ∈ 〈y, x〉. It is clear that |at| > 4. Hence
at ∈ N and a ∈ N , which is impossible. Thus the quotient-group G/NA

G is Abelian,
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[N, 〈a〉] = 1 and [y, a] = ckhm. If m ≡ 0 (mod 2), then [y2, a] = c2k ∈ 〈c〉, which is
impossible because a ∈ N . Thus m = 1 and [y, a] = ckh. Hence

(ya)2 = ya2yckh = c1+khz,

z ∈ ω(G). On the other hand, since |ya| > 4, 〈ya〉 ∩ NA
G ⊆ 〈c〉ω(G) by the proved

above. We get a contradiction.

The theorem is proved.

Corollary 6. A group G of type α does not contain a quaternion subgroup if and
only if the norm NA

G does not contain such a subgroup.

4 Finite 2-groups with cyclic center and a non-Dedekind non-
metacyclic norm of Abelian non-cyclic subgroups (groups of
type β)

Lemma 11. Let G be a finite 2-group with a non-Dedekind norm NA
G of Abelian

non-cyclic subgroups which is a group of one of the types (4)-(8) of Proposition 2.
Then the center Z(G) of the group G is non-cyclic.

Proof. Let NA
G be a group of one of the types which have been noted in the condition

of the lemma. Then the center Z(NA
G ) of the norm NA

G is non-cyclic. If the norm
NA

G is a group of type (6) of Proposition 2, then ω(NA
G ) ⊆ Z(G) and the group G

has the non-cyclic center.

So we will assume that NA
G is a group of one of types (4)-(5) or (7)-(8). In

each of these cases ω(NA
G ) is an elementary Abelian subgroup of order 4. Since

ω(NA
G ) ⊆ Z(NA

G ), we have ω(NA
G ) = ω(G) by Lemma 2.

Suppose ω(NA
G ) 6⊂ Z(G), contrary to the conditions of the lemma. Then

ω(NA
G ) ∩ Z(G) 6= E

by the condition ω(NA
G ) � G. Let ω(NA

G ) = 〈a1〉 × 〈a2〉, |a1| = |a2| = 2, where
a1 ∈ Z(G) and a2 /∈ Z(G).

Let’s denote C = CG

(
ω(NA

G )
)
. Then G = C · 〈y〉, |y| > 4, y2 ∈ C by Lemma 3.

Since NA
C ⊂ C, NA

G ⊆ NA
C and C contains all Abelian non-cyclic subgroups of G,

NA
G = NA

C . Since the norm NA
C is non-metacyclic and Z(C) is non-cyclic, C is either

a non-metacyclic non-Dedekind HA2-group by Theorem 2 and C = NA
C = NA

G , or
C = H · Q is a product of the quaternion group H = 〈h1, h2〉 of order 8 and a

generalized quaternion group Q = 〈t, q〉, |t| = 2k > 8, t2
k−1

= q2, q−1tq = t−1,

[H,Q] ⊆ ω(C) and NA
C = NA

G =
〈
t2

k−2
〉
× H.

In the previous case NA
G is a group of type (6) of Proposition 2, which contradicts

the proved above.
Thus we will assume that C = NA

G and G = NA
G · 〈y〉, where y2 ∈ NA

G . In this
case NA

G is a non-Dedekind HA2-group of exponent 4. So |y| = 8, y4 = a1 ∈ Z(G)
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by Lemma 4. It is also easy to prove that the norm NA
G contains all elements of

order 4 of the group G.
Let’s consider the quotient-group

G = G/ω(G) ∼= NA
G · 〈y〉 , y2 ∈ NA

G ,

where |y| = 4. Since ω
(
G

)
= NA

G � G,
∣∣∣NA

G

∣∣∣ ≥ 8 and y induces an automorphism

of order 2 on ω(G), there is an involution z such that 〈y〉 ∩ 〈z〉 = E and [z, y] = 1
in ω(G). Turning to the preimages, we have [z, y] = a, where a ∈ ω(G). Since[
z2, y

]
= 1, we conclude that z2 = a1. Let a ∈ 〈a1〉, then

[
z, y2

]
= 1 and

∣∣y2z
∣∣ = 2.

But in this case y2 ∈ 〈z〉ω(G) and the intersection 〈y〉 ∩ 〈z〉 is non-identity in the
quotient-group G. It is a contradiction. Thus, a /∈ 〈a1〉 and we can assume without
loss of generality that a = a2. Then y−1zy = za2,

[
z, y2

]
= z2 = a1, and

〈
y2, z

〉
is

the quaternion group, which is impossible if the norm NA
G is a group of type (4) or

(5) of Proposition 2.
Let NA

G contain the quaternion group, i.e. NA
G is a group of type (7) or (8) of

Proposition 2. Then NA
G = H ·Q is a direct or a semidirect product of two quaternion

groups H and Q, [H,Q] ⊆ Q2.
Then in the group G = NA

G · 〈y〉 the subgroup
〈
y2, a2

〉
is Abelian non-cyclic by

the inclusion ω(NA
G) ⊆ Z(NA

G ) and therefore
〈
y2, a2

〉
is a normal subgroup in G.

The subgroup ÑA
G is elementary Abelian of order 8 in the quotient-group

G̃ = G/
〈
y2, a2

〉
∼= ÑA

G ⋋ 〈ỹ〉 .

Since ỹ induces an automorphism of order 2 on ÑA
G , it is always possible to point

out involutions z̃1, z̃2 ∈ ÑA
G which are permutable with ỹ. Turning to preimages we

get that [zi, y] = y2miasi , i = 1, 2.
If s1 = s2 = 1, then [z1z2, y] = y2t. If (t, 2) = 1, then |yz1z2| ≤ 4 and y ∈ NA

G by
the proved, which is impossible. Thus t = 2t1 and [z1z2, y] = y4t1 ∈ Z(G). But

[
z1z2, y

2
]

=
[
(z1z2)

2, y
]

= 1

by such conditions. From the second part of the equality we have (z1z2)
2 = a1 = y4

and
∣∣z1z2y

2
∣∣ = 2, which contradicts the structure of the norm NA

G .
Thus we can assume that at least one of numbers si = 0. But then [zi, y] = y2mi

and we again get a contradiction repeating the above argument. In this case G = C
and ω

(
NA

G

)
⊆ Z(G).

Theorem 3. G is a group of type β if and only if it is a group of one of the following
types:

1) G is a non-metacyclic non-Hamiltonian HA2-group with a cyclic center, G = NA
G ;

2) G = (〈x〉 ⋋ 〈b〉) ⋋ 〈c〉 , |x| = 2n, n > 3, |b| = |c| = 2, [x, c] = x±2n−2
b, [b, c] =

[x, b] = x2n−1
, NA

G =
(〈

x2
〉
× 〈b〉

)
⋋ 〈c〉;
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3) G = (〈x〉 × 〈b〉) ⋋ 〈c〉 ⋋ 〈d〉 , |x| = 2n, n > 2, |b| = |c| = |d| = 2, [x, c] = [x, b] =

1, [b, c] = [c, d] = [b, d] = x2n−1
, d−1xd = x−1, NA

G =
(〈

x2n−2
〉
× 〈b〉

)
⋋ 〈c〉;

4) G = (〈c〉 ⋋ H) 〈y〉,H = 〈h1, h2〉 , |h1| = |h2| = 4, h2
1 = h2

2 = [h1, h2],|c| = 4,
[c, h1] = c2, [c, h2] = 1, y2 = h1, [y, h2] = c2h2

1, [y, c] = h±1
2 , NA

G = 〈c〉 ⋋ H.

Proof. Let a group G and its norm of Abelian non-cyclic subgroups satisfy the
conditions of the theorem. Let’s continue the proof of the theorem in the following
lemmas.

Lemma 12. Let G be a finite 2-group and its norm NA
G of Abelian non-cyclic

subgroups be a group of type (10) of Proposition 2. Then all Abelian non-cyclic
subgroups are normal in G and G = NA

G .

Proof. Let NA
G be a group of type (10) of Proposition 2, i.e.

NA
G = (H × 〈a〉) 〈b〉 ,

where H = 〈h1, h2〉, |h1| = |h2| = 4, |a| = 2, |b| = 8, b2 = h1, [h2, b ] = a, [a, b] =
[h1, h2] = h2

1 = h2
2. In particular, ω

(
NA

G

)
=

〈
h2

1, a
〉

and Z
(
NA

G

)
=

〈
h2

1

〉
⊂ Z(G).

NA
G contains all elements of order 2 of the group G by Lemma 3 and ω

(
NA

G

)
=

ω (G). Let’s denote C = CG (ω(G)). Then [G : C] = 2 and G = C 〈b〉, b2 ∈ C. By
the proved above, the lower layer ω

(
NA

G

)
contains all involutions of the centralizer

C, so the quotient-group C = C/ 〈a〉 contains only one involution by Lemma 4.
Since C is non-Abelian, C is a quaternion 2-group:

C ∼= Q = 〈x, y〉 ,

|x| = 2n ≥ 4, |y| = 4, x2n−1
= y2, y−1xy = x−1.

Turning to the preimages and taking into account Lemma 4, we have that x2n−1
=

y2 = h2
1, y−1xy = x−1am, m ∈ {0, 1}. If m = 1, then y−1xy = x−1a and (xy)2 =

h2
1a /∈

〈
h2

1

〉
, which is impossible. Therefore m = 0, y−1xy = x−1 and

C = Q × 〈a〉 .

We can assume, without loss of generality, that H ⊆ Q, h1 ∈ 〈x〉 , 〈h2〉 = 〈y〉. If
|Q| > 8, then h2 /∈ NG (〈a, xh2〉), which is impossible, because h2 ∈ NA

G . Thus
Q = H, C = H × 〈a〉 ⊂ NA

G and

G = C〈b〉 = NA
G .

Lemma 13. If a finite 2-group G has the norm NA
G of Abelian non-cyclic subgroups

which is a group of type (3) of Proposition 2, then G = NA
G .
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Proof. Let a group G and its norm NA
G satisfy the conditions of the lemma,

NA
G = (H × 〈b〉) ⋋ 〈c〉,

where H = 〈h1, h2〉 , |h1| = |h2| = 4, [h1, h2] = h2
1 = h2

2, |b| = |c| = 2, [H, 〈b〉] =
[H, 〈c〉] = E, [b, c] = h2

1.
Suppose that G 6= NA

G and let’s prove that NA
G contains all involutions of the

group G. Indeed, otherwise we have 〈z, h2
1〉 ⊳ G1 = 〈z〉NA

G for any involution z ∈
G\NA

G . Therefore
[
G1 : CG1

(
〈z, h2

1〉
)]

≤ 2 and G1\
〈
h2

1

〉
contains an involution

y 6= h2
1 which is permutable with z. So,

〈y, z〉 ∩ NA
G = 〈y〉 ⊳ NA

G ,

which is impossible. Hence all involutions of a group G are contained in NA
G .

Suppose that an element x of order 4 exists in G\NA
G . By Lemma 4 x2 = h2

1.
Thus any element a of order 4 of the norm NA

G is not permutable with x, otherwise
|ax|=2 and x ∈ NA

G by the proved above. Let’s denote G2 = 〈x〉NA
G and consider the

quotient-group G2 = G2/
〈
h2

1

〉
. Since NA

G is an elementary Abelian group of order

16, normal in G2 and x induces an automorphism of order 2 on NA
G , there exist

involutions y1, y2 ∈ NA
G , 〈y1〉 ∩ 〈y2〉 = E, which are permutable with x. Turning to

the preimages we will have [x, yi] ∈
〈
h2

1

〉
, i = 1, 2. It is easy to prove that the group

〈y1, y2〉 contains an involution y 6= h2
1 which is permutable with x. Then 〈x, y〉�G2

as an Abelian non-cyclic subgroup and

G′

2 ⊆ 〈x, y〉 ∩ NA
G =

〈
y, h2

1

〉
.

Let t be an arbitrary non-central involution of NA
G which differs from y. Let’s

put
[x, t] = ymh2k

1 ,m, k ∈ {0, 1} .

Then
[
x, t2

]
= h2m

1 . On the other hand,
[
x, t2

]
= 1, therefore m = 0 and[

〈x〉 , NA
G

]
⊆

〈
h2

1

〉
. However in this case the group G2 will contain an involu-

tion which does not belong to NA
G , that contradicts the proved above. Therefore

NA
G contains all elements of order 4 of the group G.

According to the assumption G 6= NA
G, we conclude that there is an element

x ∈ G\NA
G , |x| = 8. Since x2 ∈ NA

G ,
∣∣x2

∣∣ = 4 and all cyclic subgroups of order 4 are
normal in NA

G , we have 〈
x2

〉
⊳ G3 = 〈x〉N

A

G
.

Let’s consider the quotient-group G3 = G2/
〈
x2

〉
. Since NA

G is a normal ele-
mentary Abelian group of order 8 and x induces an automorphism of order 2 on it,
there exist involutions y1, y2 ∈ NA

G , 〈y1〉 ∩ 〈y2〉 = E, which are permutable with
x. Turning to the preimages we get [x, yi] ∈

〈
x2

〉
, i = 1, 2. It is easy to check

that [x, yi] ∈
〈
h2

1

〉
and the group

〈
x2, y1, y2

〉
contains an involution y which is

permutable with x. Then 〈x, y〉 ⊳ G3 as an Abelian non-cyclic subgroup and

G′

3 ⊆ 〈x, y〉 ∩ NA
G = 〈y, x2〉.
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Let [x, t] = x2myk, where t is an arbitrary non-central involution of NA
G which

differs from y. Since NA
G contains all elements of order 4, [x, t] ∈

〈
h2

1

〉
by the condi-

tion
[
x, t2

]
= 1. But then

[
x2, t

]
= 1 and x2 ∈ Z(G3), which is impossible, because

the norm NA
G does not contain non-central elements of order 4. This contradiction

proves that G = NA
G.

Lemma 14. If a finite 2-group G has a non-Dedekind norm NA
G 6= G which is a

group of type (1) of Proposition 2, then G is a group of one of types (2) or (3) of
Theorem 3.

Proof. Let G 6= NA
G and

NA
G = (〈a〉 × 〈b〉) ⋋ 〈c〉 ,

where |a| = 2n, n ≥ 2, |b| = |c| = 2, [a, c] = [a, b] = 1, [b, c] = a2n−1
. Since NA

G � G,

the intersection NA
G ∩Z(G) 6= E in the quotient-group G = G/ 〈a〉. We can assume

without loss of generality that b ∈ Z(G). Then 〈a, b〉�G, ω (〈a, b〉) =
〈
a2n−1

, b
〉

�G.

Let’s denote C = CG

(〈
a2n−1

, b
〉)

. Then C ⊳ G, [G : C] = 2 and G = C ⋋ 〈c〉,

where c ∈ NA
G , |c| = 2. By Lemma 4 the quotient-group C = C/ 〈b〉 has only one

involution and C is a cyclic group or a generalized quaternion group.

Let C be cyclic, then its full preimage C = 〈x〉 × 〈b〉 is Abelian and

[x, c] ∈ C ∩ NA
G = 〈a, b〉 .

Let’s put [x, c] = ambk. If |[x, c]| = 2, then G′ ⊂
〈
a2

〉
and G is an HA2-group,

contrary to the assumption. Thus |[x, c]| > 2. If |a| = 4, then [x, c] = a±1b by

the condition
[
x, c2

]
= 1, so (xc)2 ∈ Z(G) and |x| ≤ 8. So x2 = a

±1
b. However,

c /∈ NG

(〈
a2

〉
× 〈xbc〉

)
by such conditions, i.e. c /∈ NA

G , which is impossible.

Let |a| > 4, then m = 2n−2m1, where (m1, 2) = 1, (k, 2) = 1. Thus [x, c] =
a±2n−2

b, (xc)2 = x2a±2n−2
b and (xc)2 ∈ Z(G). Since Z (G) = 〈a〉 and |x| > |a|

by the previous reasoning, (xc)2 = a. Let’s denote xc = y. Then |y| = 2n+1,
[y, b] = y2n

, [y, c] = y±2n−1
b and

G = (〈y〉 ⋋ 〈b〉) ⋋ 〈c〉

is a group of type (2) of Theorem 3.

Let C be a generalized quaternion group C =
〈
h1, h2

〉
, where

∣∣h1

∣∣ = 2n, n ≥ 2,
∣∣h2

∣∣ = 4, h1
2n−1

= h2
2
, h2

−1
h1h2 = h1

−1
. Let h1 and h2 denote the preimages of

elements h1 and h2, respectively. Since the center Z(G) is cyclic, h2n−1

1 = h2
2 = a2n−1

,
h−1

2 h1h2 = h−1
1 bm, m ∈ {0, 1}, by Lemma 4. If m 6= 0, then

(h1h2)
2 = h2

2b = a2n−1
b,

which contradicts Lemma 4. Thus m = 0, C = H×〈b〉 , H = 〈h1, h2〉 is a generalized
quaternion group. We also note that 〈a〉 ⊆ 〈h1〉 by the condition 〈a〉 � G.
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Since
[h2, c] ∈ 〈h2, b〉 ∩ 〈b, c〉 =

〈
a2n−1

, b
〉

and
[
h2, c

2
]

= 1, we conclude that [h2, c] ∈
〈
a2n−1

〉
. Then one of the elements h2c

or h2bc is of order 2, and hence one of the subgroups
〈
h2c, a

2n−1
〉

or
〈
h2bc, a

2n−1
〉

is elementary Abelian. Since 〈a〉 ⊆ NA
G , the element a has to normalize these

subgroups, which is possible only if |a| = 4.
Based on the fact that 〈h1h2〉 × 〈b〉 is an Abelian non-cyclic subgroup, we have

[h1h2, c] ∈ (〈h1h2〉 × 〈b〉) ∩ NA
G =

〈
a2, b

〉
.

It is easy to prove that [h1h2, c] ∈
〈
a2

〉
by Lemma 4. It also follows that [h1, c] ∈

〈
a2

〉
.

Thus
[
H, NA

G

]
=

〈
a2

〉
.

Let’s denote B = 〈b, c〉. Since B is a 2-generated non-Abelian subgroup and
the commutant [B,G] ⊆

〈
a2

〉
is of order 2, we have G = BCG(B) by [10]. We

can assume without loss of generality that H = CG(B). If |H| = 8, then G is an
HA2-group, which contradicts the assumption. So |H| > 8 and G is a group of type
(3) of Theorem 3.

Lemma 15. If a finite 2-group G has the norm NA
G 6= G which is a group of type

(9) of Proposition 2, then G is a group of type (4) of Theorem 3.

Proof. Let NA
G be a group of type (9) of Proposition 2: NA

G = 〈c〉 ⋋ H, where

H = 〈h1, h2〉, |h1| = |h2| = 4, h2
1 = h2

2 = [h1, h2], |c| = 2n > 2, [c, h1] = c2n−1
,

[c, h2] = 1.
Suppose that NA

G 6= G. Since ω
(
NA

G

)
⊂ Z

(
NA

G

)
and ω

(
NA

G

)
6⊂ Z (G), we have

ω (G) = ω
(
NA

G

)
by Lemma 2 and G = C 〈y〉, where C = CG

(
ω

(
NA

G

))
� G, y2 ∈ C,

|y| > 4 by Lemma 4. The group C contains all Abelian non-cyclic subgroups of the
group G, so

NA
G ⊆ NA

C ⊆ C.

Thus C is a 2-group which has the norm of Abelian non-cyclic subgroups of type (9)
of Proposition 2 and the non-cyclic center. We conclude that C is an HA2-group
and

C = NA
G = 〈c〉 ⋋ H

by Theorem 2. Thus

G = C 〈y〉 = (〈c〉 ⋋ H) 〈y〉, |y| > 4, y2 ∈ C.

Let |y| = 2k. Since y /∈ C,ω (G) ∩ 〈y〉 ⊆ Z(G). Let’s denote 〈a1〉 = ω (G) ∩ 〈y〉
and consider the quotient-group

G = G/ω (G) ∼= C 〈y〉 .

Since the lower layer ω
(
C

)
is an elementary Abelian subgroup of order 8 and

ω
(
C

)
� G, we conclude that ω

(
C

)
contains an involution z such that [z, y] = 1,
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〈z〉 ∩ 〈y〉 = E. Turning to the preimages we put [z, y] = a, where |a| = 2, a ∈ ω (G).

Then
[
z2, y

]
= 1 and z2 = a1 ∈ Z (G). If a ∈ Z (G), then

[
z, y2

]
= 1,

∣∣∣y2k−2
z
∣∣∣ = 2,

which is impossible, because the elements of the order 4 of NA
G do not have such

property. Thus a /∈ Z (G) and
[
z, y2

]
= a1. It follows that

〈
z, y2

〉
is the quaternion

group and |y| = 8.
If |c| > 4, then a1 = c2n−1

∈ Z (G) and c2n−1
∈

〈
z, y2

〉
. But any quaternion

group in NA
G does not contain c2n−1

. This means that |c| = 4, c2 /∈ Z (G) and
a1 = h2

1 ∈
〈
z, y2

〉
. Taking into account the structure of the quaternion subgroups in

NA
G , we have

〈
z, y2

〉
=

〈
h2c

2m, h1h
l
2c

s
〉
.

Suppose that
〈
y2

〉
�G. Then we can assume that y2 = h2c

2m, z = h1h
l
2c

s. Let’s
consider the quotient-group

G̃ = G/
〈
y2

〉
∼=

(
〈c̃〉 ⋋

〈
h̃1

〉)
⋋ 〈ỹ〉 .

Since 〈c̃〉 is a characteristic subgroup in ÑA
G , 〈c̃〉 � G̃ and [c̃, ỹ] ∈

〈
c̃2

〉
. Turning to

the preimages we have [c, y] = c2ry2i. So
[
c2, y

]
= h2i

2 6= 1 and i ≡ 1 (mod 2). It is
easy to verify that in this case |cy| ≤ 4, which contradicts the proved.

Thus
〈
y2

〉
6⊳ G. Then we can assume that y2 = h1h

l
2c

s and z = h2c
2m, respec-

tively. Let’s consider the quotient-group

G = G/ω(G) ∼=
(
〈c〉 ×

〈
h1

〉
×

〈
h2

〉)
〈y〉 .

Without loss of generality, 〈y〉 ∩ N
A

G =
〈
h1

〉
and z = h2. Then [y, z] =

[
y, h2

]
= 1

according to the choice of z. We get
[
〈y〉 ,N

A

G

]
⊆ N

A

G ∩
〈
y, h2

〉
=

〈
y2, h2

〉
= H

by the condition
〈
y, h2

〉
� G. Thus [y, h2] = c2lh2s

1 and [y, c] = c2l1hm
1 h

r

2. We have
l 6≡ 0 (mod 2) by the first equality and the condition

[
y, c2

]
6= 1. We have m ≡ 0

(mod 2) and r 6≡ 0 (mod 2) by the second equality and the condition
[
y, c2

]
6= 1.

Thus [y, h2] = c2h2s
1 and [y, c] = c2lh

±1
2 . Further l1 ≡ s (mod 2), because

[
y2, c

]
=

c2.
We can assume without loss of generality that

G = C 〈y〉 = (〈c〉 ⋋ H) 〈y〉 ,

where H = 〈h1, h2〉, |h1| = |h2| = 4, h2
1 = h2

2 = [h1, h2], |c| = 4, [c, h1] = c2,
[c, h2] = 1, y2 = h1, [y, h2] = c2h2

1, [y, c] = h±1
2 . In this group all Abelian non-cyclic

subgroups are contained in 〈c〉 ⋋ H and are normalized by this subgroup. At the
same time y /∈ NA

G, because y /∈ NG

(〈
c, h2

1

〉)
.

Theorem is proved.

Corollary 7. Any group G of type β is a cyclic or metacyclic extension of the norm
NA

G .
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