Finite 2-groups with a non-Dedekind non-metacyclic norm of Abelian non-cyclic subgroups

Fedir Lyman, Tetyana Lukashova, Marina Drushlyak

Abstract. The authors study finite 2-groups with non-Dedekind non-metacyclic norm N_G^A of Abelian non-cyclic subgroups depending on the cyclicness or the non-cyclicness of the center of a group G. The norm N_G^A is defined as the intersection of the normalizers of Abelian non-cyclic subgroups of G. It is found out that such 2-groups are cyclic extensions of their norms of Abelian non-cyclic subgroups. Their structure is described.

Mathematics subject classification: 20D25.

Keywords and phrases: Finite group; non-Dedekind group; non-metacyclic group; norm of group; norm of Abelian non-cyclic subgroups.

1 Introduction

One of the main directions in group theory is the study of the impact of characteristic subgroups on the structure of the whole group. Such characteristic subgroups include different Σ -norms of a group. A Σ -norm is the intersection of the normalizers of all subgroups of a system Σ (assuming that the system Σ is non-empty). It is clear that when the Σ -norm coincides with a group, then all subgroups of the system Σ are normal in the last one.

For the first time, R. Baer [1] considered the Σ -norm as a proper subgroup of a group in 1935 for the system of all subgroups of this group. He called it the norm of a group and denoted by N(G). Narrowing the system of subgroups one can get different Σ -norms which can be considered as generalizations of the norm N(G). Recently the interest in studying the Σ -norms does not decrease as evidenced by the series of works [2–4,9,11].

If Σ is the system of all Abelian non-cyclic subgroups, then such a Σ -norm will be called the norm of Abelian non-cyclic subgroups and denoted by N_G^A . Thus the norm N_G^A of Abelian non-cyclic subgroups of a group G is the intersection of the normalizers of all Abelian non-cyclic subgroups of a group G, assuming that the system of such subgroups is non-empty.

Here we improve and extend some earlier results [8].

2 Preliminary Results

In a group G which coincides with the norm N_G^A all Abelian non-cyclic subgroups (assuming the existence of at least one such a subgroup) are normal. Non-Abelian

[©] F. Lyman, T. Lukashova, M. Drushlyak, 2019

groups with this property were called \overline{HA} -groups (\overline{HA}_2 -groups in the case of 2-groups) [7].

Proposition 1. [7] A non-Hamiltonian \overline{HA}_2 -group does not contain an elementary Abelian subgroup of order 8.

Proposition 2. [7] Finite non-Hamiltonian $\overline{HA_2}$ -groups are groups of the following types:

 $\begin{array}{l} 1) \ G = (\langle a \rangle \times \langle b \rangle) \\ \langle c \rangle, \ where \ |a| = 2^n, \ n > 1, \ |b| = |c| = 2, \ [a,b] = [a,c] = 1, \\ [b,c] = a^{2^{n-1}}; \end{array} \\ \begin{array}{l} 2) \ G = \langle a \rangle \land \langle b \rangle, \ where \ |a| = 2^n, \ |b| = 2^m, \ n \geq 2, \ m \geq 1, \ [a,b] = a^{2^{n-1}}; \\ \hline 3) \ G = (H \times \langle b \rangle) \land \langle c \rangle, \ where \ H = \langle h_1, h_2 \rangle, \ |h_1| = |h_2| = 4, \ h_1^2 = h_2^2, \ |b| = |c| = 2, \\ [h_1, h_2] = h_1^2, \ [H, \langle b \rangle] = [H, \langle c \rangle] = E, \ [b,c] = h_1^2; \\ \hline 4) \ G = (\langle a \rangle \times \langle b \rangle) \langle c \rangle, \ where \ |a| = |b| = |c| = 4, \ c^2 = a^2 b^2, \ [c,b] = c^2, \ [c,a] = a^2; \\ \hline 5) \ G = (\langle a \rangle \times \langle b \rangle) \langle c \rangle \langle d \rangle, \ where \ |a| = |b| = |c| = |d| = 4, \ c^2 = d^2 = a^2 b^2, \ [a,c] = \\ [d,c] = a^2, \ [b,d] = b^2, \ [c,b] = [d,a] = c^2; \\ \hline 6) \ G = H \times \langle c \rangle, \ where \ H \ is \ the \ quaternion \ group, \ |c| = 2^n, \ n \geq 2; \\ \hline 7) \ G = H \times Q, \ where \ H \ and \ Q \ are \ the \ quaternion \ groups; \\ \hline 8) \ G = (H \times \langle b \rangle) \langle c \rangle, \ where \ H = \langle h_1, h_2 \rangle, \ |h_1| = |h_2| = |b| = |c| = 4, \ [h_1, h_2] = h_1^2 = h_2^2, \ [c,h_1] = c^{2^{n-1}}; \\ \hline 9) \ G = (\langle h_2 \rangle \times \langle c \rangle) \langle h_1 \rangle, \ where \ |h_1| = |h_2| = 4, \ [h_1, h_2] = h_1^2 = h_2^2, \ |c| = 2^n > 2, \\ [c,h_1] = c^{2^{n-1}}; \\ \hline 10) \ G = \langle H \times \langle b \rangle \rangle \langle c \rangle, \ where \ H = \langle h_1, h_2 \rangle, \ |h_1| = |h_2| = 4, \ |b| = 2, \ |c| = 8, \\ [b,c] = [h_1, h_2] = h_1^2 = h_2^2, \ c^2 = h_1, \ [h_2, c] = b; \\ \hline 11) \ G = \langle a \rangle \langle b \rangle, \ where \ |a| = 8, \ |b| = 2^n > 2, \ a^4 = b^{2^{n-1}}, \ a^{-1}ba = b^{-1}. \end{array}$

It is clear that the subgroup N_G^A is characteristic and contains the center Z(G) of the group G.

To reduce the presentation, a finite 2-group with non-Dedekind non-metacyclic norm N_G^A of Abelian non-cyclic subgroups will be called a group of type α if the center Z(G) of the group G is non-cyclic, and a group of type β if the center Z(G)of the group G is cyclic.

The following corollary immediately follows from Proposition 2.

Corollary 1. If G is a group of type α and $G = N_G^A$, then N_G^A is a group of one of the types (4)-(9) of Proposition 2. If G is a group of type β and $G = N_G^A$, then N_G^A is a group of one of the types (1), (3), (10) of Proposition 2.

It turns out that there exist groups such that the center $Z(N_G^A)$ of the norm N_G^A of the group G is non-cyclic but the center Z(G) of the group G is cyclic. The following example shows it.

Example 1. $G = (\langle b \rangle \land H) \langle y \rangle$, where |b| = 4, $H = \langle h_1, h_2 \rangle$, $|h_1| = 4$, $[h_1, h_2] = h_1^2 = h_2^2$, $[b, h_2] = 1$, $y^2 = h_1$, $[y, h_2] = b^2 h_1^2$, $[y, b] = h_2$.

In this group all Abelian non-cyclic subgroups are contained in the group $\langle b \rangle \\ightarrow H$ and are normal in it. So it is easy to verify that $N_G^A = \langle b \rangle \\ightarrow H$ and $Z(N_G^A) = \langle b^2 \rangle \\ightarrow \langle h_1^2 \rangle$ is non-cyclic. At the same time $Z(G) = \langle h_1^2 \rangle$ is cyclic.

Lemma 1. If Z is a central non-cyclic subgroup of a group G, then $\overline{N_G^A} \subseteq N(\overline{G})$ in the quotient-group $G/Z = \overline{G}$, where $N(\overline{G})$ is the norm of the group \overline{G} .

Proof. It suffices to show that the group $\overline{N_G^A}$ normalizes every cyclic subgroup of the group $\overline{G} = G/Z$.

Let $\overline{x} \in \overline{G}$. Then the full preimage of the subgroup $\langle \overline{x} \rangle$ in the group G is the Abelian non-cyclic subgroup $\langle x, Z \rangle$. Therefore, $N_G^A \subseteq N_G(\langle x, Z \rangle)$. In the quotient-group \overline{G}

$$[\overline{N_G^A} \subseteq \overline{N_G(\langle x, Z \rangle)} \subseteq N_{\overline{G}}(\langle \overline{x} \rangle)],$$

thus $\overline{N_G^A} \subseteq N(\overline{G})$.

Let's denote the lower layer of a group G by $\omega(G)$. It is the subgroup generated by all elements of prime order of the group G.

Lemma 2. If the norm N_G^A of Abelian non-cyclic subgroups of a finite 2-group G is non-Dedekind non-metacyclic and its lower layer $\omega(N_G^A)$ is an elementary Abelian subgroup of order 4, then N_G^A contains all involutions of the group G and $\omega(N_G^A) = \omega(G)$.

Proof. Let a group G and its norm N_G^A of Abelian non-cyclic subgroups satisfy the conditions of the lemma. Then N_G^A is a group of one of types (4)-(10) of Proposition 2. Since $\omega(N_G^A) \triangleleft N_G^A$ and the subgroup $\omega(N_G^A)$ is characteristic in N_G^A , $\omega(N_G^A) \triangleleft G$. Therefore $\omega(N_G^A) \cap Z(G) \neq E$.

Let $\omega(N_G^A) = \langle a_1 \rangle \times \langle a_2 \rangle$, $|a_1| = |a_2| = 2$, $a_1 \in Z(G)$ for the definiteness. Suppose that G contains an involution $x \notin N_G^A$. Then the subgroup $\langle a_1, x \rangle$ is Abelian and normal in the group $G_1 = \langle x \rangle N_G^A$. Since $[G_1 : C_{G_1}(\langle a_1, x \rangle)] \leq 2$, $[y^2, x] = 1$ for an arbitrary element $y \in N_G^A$. If N_G^A is a group of one of types (4)-(9) of Proposition 2, then $[(N_G^A)^2, \langle x \rangle] = [\omega(N_G^A), \langle x \rangle] = E$. Therefore $\langle x \rangle \triangleleft G_1$ as the intersection of normal subgroups $\langle a_1, x \rangle$ and $\langle a_2, x \rangle$. Thus $G_1 = \langle x \rangle \times N_G^A$ is a non-Hamiltonian \overline{HA}_2 -group which contains an elementary Abelian subgroup of order 8, which contradicts Proposition 1. So, in this case $\omega(N_G^A) = \omega(G)$.

Let N_G^A be a group of type (10) from Proposition 2. Then $Z(N_G^A) = \langle h_1^2 \rangle$, where $h_1 \in H$, $|h_1| = 4$ and $h_1^2 = a_1 \in Z(G)$. By the proved above for the involution:

$$\left[\left\langle x\right\rangle, N_{G}^{A}\right] \subseteq \left\langle a_{1}\right\rangle = \left\langle h_{1}^{2}\right\rangle.$$

Therefore $[x, b^2] = [x, h_1] = 1$. If $[x, h_2] = 1$ then $\langle x, h_2 \rangle \bigcap N_G^A = \langle h_2 \rangle \triangleleft N_G^A$, which is impossible. Thus, $[x, h_2] = h_1^2$ and $|xh_2| = 2$. Since $xh_2 \notin N_G^A$, $[xh_2, b] \in \langle h_1^2 \rangle$, $[xh_2, b^2] = [xh_2, h_1] = 1$.

On the other hand, $[xh_2, h_1] = [h_2, h_1] = h_1^2 \neq 1$. The contradiction proves that $\omega(N_G^A) = \omega(G)$.

Corollary 2. If the norm N_G^A of Abelian non-cyclic subgroups of a finite 2-group G is non-Dedekind non-metacyclic and has the non-cyclic center $Z(N_G^A)$, then $\omega(N_G^A) = \omega(G)$.

Lemma 3. If the norm N_G^A of Abelian non-cyclic subgroups of a finite 2-group G is non-Dedekind, has the non-cyclic center and the non-central in G lower layer $\omega(N_G^A)$, then $G = C \langle y \rangle$, where $C = C_G(\omega(N_G^A))$, $C \triangleleft G$, |y| > 4, $y^2 \in C$. In this case every Abelian non-cyclic subgroup of a finite 2-group G is contained in C and $N_G^A = N_C^A \subseteq C$.

Proof. By the condition of the lemma the norm N_G^A is a group of one of the types (4)-(9) of Proposition 2. In each of these cases $\omega(N_G^A)$ is an elementary Abelian subgroup of order 4 and $\omega(N_G^A) \not\subset Z(G)$ according to the condition of the lemma.

Let's denote $C = C_G(\omega(N_G^A))$. Since $\omega(N_G^A) \triangleleft G, C \triangleleft G, [G:C] = 2$. Thus $G = C \langle y \rangle$, where $y^2 \in C$.

Since $\omega(N_G^A) \subseteq Z(N_G^A)$, $N_G^A \subseteq C$ and $y \notin N_G^A$. By Lemma 2 $\omega(N_G^A) = \omega(G)$, so |y| > 2. Let |y| = 4, then the subgroup $\langle y \rangle \omega(G)$ is a dihedral group of order 8. Since $\langle y \rangle \omega(G) = \langle y, b \rangle$, we have |yb| = 2. But $yb \in \omega(G)$ and $y \in \omega(G)$ by such conditions, which is impossible. Thus |y| > 4. Taking into account that every Abelian non-cyclic subgroup contains $\omega(N_G^A)$, we conclude that it is contained in C. Therefore $N_G^A = N_C^A \subseteq C$.

Lemma 4. Let G be a group of type β and the center $Z(N_G^A)$ is cyclic and contains an involution a. Then the element a is contained in every cyclic subgroup of composite order of the group G.

Proof. Let x be an arbitrary element of the group G, $|x| = 2^k$, k > 1. Let $\langle x \rangle \cap \langle a \rangle = E$ and $a \in Z(N_G^A)$, |a| = 2. Then [x, a] = 1 and $\langle x, a \rangle \triangleleft G_1 = \langle x \rangle N_G^A$. Since $\langle x^2 \rangle \triangleleft G_1$ and $\langle x^{2^{k-1}} \rangle \triangleleft G_1$, we have $x^{2^{k-1}} \in Z(G_1)$.

If $x^{2^{k-1}} \notin N_G^A$, then for an arbitrary element $y \in N_G^A \langle y \rangle \times \langle x^{2^{k-1}} \rangle \triangleleft G_1$,

$$(\langle y \rangle \times \langle x^{2^{k-1}} \rangle) \cap N_G^A = \langle y \rangle \triangleleft N_G^A.$$

Thus the norm N_G^A is Dedekind, which is impossible. Then $x^{2^{k-1}} \in N_G^A$, $x^{2^{k-1}} \in Z(N_G^A)$, $a \in Z(N_G^A)$ and $Z(N_G^A)$ is non-cyclic, which contradicts the condition. Thus, $\langle x \rangle \cap \langle a \rangle \neq E$ and $a \in \langle x \rangle$.

3 Finite 2-groups with a non-cyclic center and a non-Dedekind non-metacyclic norm of Abelian non-cyclic subgroups (groups of type α)

The norm N_G^A of Abelian non-cyclic subgroups is closely related to the norm N_G of non-cyclic subgroups. The last one is the intersection of the normalizers of all non-cyclic subgroups of a group G and was studied in [5] for the case of finite

7

2-groups. If $G = N_G$, then all non-cyclic subgroups are normal in the group G. Such groups were studied in [6] and were called \overline{H} -groups.

In the general case $N_G \subseteq N_G^A$. However, if every non-cyclic subgroup is covered by Abelian non-cyclic subgroups, then $N_G = N_G^A$. In particular, we obtain the following.

Theorem 1. If G is a group of type α and does not contain the quaternion group, then $N_G^A = N_G$.

Proof. Since the center of the group G is non-cyclic, $\omega(G) = \omega(N_G^A)$ by Corollary 2. Taking into account that the group G does not contain the quaternion group and has a non-cyclic center, every non-cyclic subgroup contains the lower layer $\omega(G)$. Therefore $\langle x, \omega(G) \rangle$ is an Abelian non-cyclic subgroup for any element x of an arbitrary non-cyclic subgroup. Thus, every non-cyclic subgroup is covered by Abelian non-cyclic subgroups and $N_G^A = N_G$.

Lemma 5. Any group of type α of exponent 4 is an $\overline{HA_2}$ -group.

Proof. Let a group G satisfy the conditions of the lemma. Then $\omega(N_G^A) = \omega(G)$ by Corollary 2 and $\omega(G)$ is a central elementary Abelian group of order 4.

The quotient-group $\overline{G} = G/\omega(G)$ is a group of exponent 2. Thus \overline{G} is Abelian and $G' \subseteq \omega(G)$. Since every Abelian non-cyclic subgroup of a group G contains $\omega(G)$, every such subgroup is normal in G and G is an $\overline{HA_2}$ -group.

Corollary 3. Let G be a group of type α . If the group G contains elements of order 4 which are not contained in the norm N_G^A , then expG > 4.

Lemma 6. Let G be a group of type α . If an element $x \in G \setminus N_G^A$, |x| = 4 exists, then the subgroup $G_1 = \langle x \rangle N_G^A$ is an $\overline{HA_2}$ -group.

Proof. Let $x \in G \setminus N_G^A$, |x| = 4. By Corollary 2 $\omega(N_G^A) = \omega(G) \subseteq Z(G)$. Therefore $\langle x \rangle \omega(G) \triangleleft G_1 = \langle x \rangle N_G^A$ and

$$G_1' \subseteq \langle x \rangle \omega(G) \cap N_G^A = \omega(G).$$

Since every Abelian non-cyclic subgroup of the group G_1 contants $\omega(G)$, it is normal in G_1 . Thus G_1 is an $\overline{HA_2}$ -group.

Let's denote a subgroup which is generated by the elements of order not exceeding 2^m by $\omega_m(G)$. In particular, $\omega_1(G) = \omega(G)$ is the lower layer of the group G.

Corollary 4. Let G be a group of type α . If the norm N_G^A is a group of types (5), (7), (8), (6) (n > 2) and (9) (n > 2) of Proposition 2, then $\omega_2(N_G^A) = \omega_2(G)$ and $\omega_2(N_G^A)$ is a group of exponent 4.

Proof. Suppose that the conditions of the corollary are satisfied and an element $x \in G \setminus N_G^A$, |x| = 4 exists. Then $G_1 = \langle x \rangle N_G^A$ is an $\overline{HA_2}$ -group by Lemma 5. Taking into account the structure of the norm N_G^A and the description of $\overline{HA_2}$ -groups we get a contradiction. Thus $\omega_2(N_G^A) = \omega_2(G)$.

Lemma 7. If $\omega_2(N_G^A) = \omega_2(G)$ in a group G of type α , then the group G does not contain a generalized quaternion group of order greater than 8. If in this case the group G contains the quaternion group H, then $H \subset N_G^A$. Moreover $N_G = N_{N_G^A}$.

Corollary 5. Let G be a group of type α and its norm N_G^A does not contain the quaternion group. If $\omega_2(N_G^A) = \omega_2(G)$, then the group G does not contain the quaternion group and $N_G^A = N_G$.

Theorem 2. *G* is a group of type α if and only if it is a group of one of the following types:

1) G is a non-metacyclic non-Dedekind $\overline{HA_2}$ -group with a non-cyclic center, $G = N_G^A$;

2) $G = H \cdot Q$, where H is the quaternion group of order 8, Q is a generalized quaternion group, $H = \langle h_1, h_2 \rangle$, $|h_1| = |h_2| = 4$, $[h_1, h_2] = h_1^2 = h_2^2$, $Q = \langle y, x \rangle$, $|y| = 2^n$, $n \ge 3$, |x| = 4, $y^{2^{n-1}} = x^2$, $x^{-1}yx = y^{-1}$, $H \cap Q = E$, $[Q, H] \subseteq \langle x^2, h_1^2 \rangle$, $N_G^A = H \times \langle y^{2^{n-2}} \rangle$.

Proof. The sufficiency of the conditions of the theorem is easy to verify directly. Let's prove the necessity of the conditions of the theorem.

Since the center Z(G) is non-cyclic, $\omega(N_G^A) \subseteq Z(G)$ and $\omega(N_G^A) = \omega(G)$ by Lemma 2. By the condition of the theorem and Corollary 1 the norm N_G^A is a group of one of the types (4)-(9) of Proposition 2.

Let's continue the proof of the theorem depending on the structure of the norm N_G^A .

Lemma 8. Let G be a group of type α and let its norm N_G^A be a group of one of types (4), (5), (7), (8) and (9) (n = 2) of Proposition 2. Then $G = N_G^A$.

Proof. Suppose that $G \neq N_G^A$. Let's prove that G is a group of exponent 4. Let an element $x \in G$, |x| = 8, exist.

If in this case the norm N_G^A is a group of one of types (5), (7), (8) of Proposition 2, then $\omega_2(N_G^A) = \omega_2(G)$ by Corollary 4 and $x^2 \in N_G^A$.

Let the norm N_G^A be a group of one of types (4) or (9) (n = 2) of Proposition 2. Suppose that $x^2 \notin N_G^A$. Since $\langle x \rangle \omega(G) \triangleleft G_1 = \langle x \rangle N_G^A$ and

$$[\langle x \rangle, N_G^A] \subseteq \langle x \rangle \omega(G) \cap N_G^A = \omega(G),$$

we have $\langle x^2 \rangle \triangleleft G_1$, $[\langle x^2 \rangle, N_G^A] = E$ and $x^2 \in Z(G_1)$. But in this case $\omega(G_1) \neq \omega(N_G^A)$, which is impossible by Lemma 2. Thus $x^2 \in N_G^A$,

$$[\langle x \rangle, \omega(G)] \subseteq \langle x \rangle \omega(G) \cap N_G^A = \langle x^2 \rangle \omega(G).$$

Let us consider the quotient-group $\overline{G_1} = G_1/\omega(G)$. By the proved above $\overline{G_1}' \subseteq \langle \overline{x}^2 \rangle$. If $\overline{G_1}' \neq \overline{E}$ and $\overline{x} \notin Z(\overline{G_1}), \langle \overline{x} \rangle \triangleleft \overline{G_1}$, then $[\overline{G_1} : C_{\overline{G_1}}(\langle \overline{x} \rangle)] = 2$. Thus $\overline{N_G^A}$ contains an element \overline{y} of order 2 which is permutable with \overline{x} . Therefore $\langle \overline{x}, \overline{y} \rangle$ is a dihedral group of order 8 and $|\overline{xy}| = 2$. Since $\omega(G)$ is a central non-cyclic subgroup,

 $\overline{N_G^A} \leq N(\overline{G})$ by Lemma 1. Therefore $\langle \overline{xy} \rangle \lhd \overline{G_1}$. Thus $\overline{G_1}$ is Abelian, which is impossible.

Therefore $\overline{G_1}' = E, G_1' \subseteq \omega(N_G^A)$ and G_1 is an $\overline{HA_2}$ -group which contains a central cyclic subgroup of order 4, which contradicts the structure of the norm N_G^A . Thus G is a group of exponent 4. G is an $\overline{HA_2}$ -group by Lemma 5.

Lemma 9. Let G be a group of type α and its norm N_G^A is a direct or a semi-direct product of a normal cyclic group of order greater than 4 and the quaternion group. Then $G = N_G^A$.

Proof. Let the norm N_G^A satisfies the conditions of the lemma. It is a group of type (6) or (9) (n > 2). Suppose that $G \neq N_G^A$. Since the center of the group G is non-cyclic, then $\omega(N_G^A) = \omega(G)$ by Lemma 2. Moreover, $\omega_2(N_G^A) = \omega_2(G)$ by Corollary 4.

If the norm N_G^A is a group of type (6) (n > 2), then $N_G^A = N_G$ by Lemma 7. By Theorem 2 [5] G is an $\overline{HA_2}$ -group and it is a semi-direct product of a normal cyclic subgroup of order greater than 4 and the quaternion group. Thus $G = N_G^A$, which is impossible.

Let the norm N_G^A be a group of type (9) (n > 2). Then N_G^A contains all quaternion groups by Lemma 7 and the non-cyclic norm N_G of a group G coincides with the non-cyclic norm of the subgroup N_G^A , $N_G = N_{N_G^A} = \langle c^2 \rangle \times H$, $|c^2| \ge 4$. By Theorem 2 [5] G is an $\overline{HA_2}$ -group and $G = N_G^A$, which is impossible.

Lemma 10. Let G be a group of type α and let its norm N_G^A be a group of the type $N_G^A = H \times \langle c \rangle$, where H is the quaternion group, |c| = 4. Then either $G = N_G^A$, or G is a group of type (2) of Theorem 2.

Proof. By Lemma 2 $\omega(N_G^A) = \omega(G)$. If $N_G^A = \omega_2(G)$, then $N_G = N_{N_G^A} = N_G^A$ by Lemma 7. By Theorem 2 [5] G is an $\overline{HA_2}$ -group and $G = N_G^A$.

Let assume that $N_G^A \neq \omega_2(G)$ and an element $x \in G \setminus N_G^A$, |x| = 4 exists. By Lemma 6 $G_1 = \langle x \rangle N_G^A$ is an $\overline{HA_2}$ -group of exponent 4. If [x, c] = 1, then G_1 contains a central cyclic subgroup $\langle c \rangle$ of order 4, which is impossible by Proposition 2, because $|\omega_2(G_1)| = 64$. Thus $c \notin Z(G)$.

If $\langle c \rangle \triangleleft G$ and $\langle c \rangle$ is a non-central subgroup, then [G:C] = 2, where $C = C_G(\langle c \rangle)$. Let's show that under these conditions all elements of order greater than 4 are permutable with the element c. Let $y \in G \setminus N_G^A$, $|y| = 2^s$, s > 2. If $\langle y \rangle \cap N_G^A \subseteq \omega(G)$, then

$$[\langle y \rangle, N_G^A] \subseteq \langle y \rangle \omega(G) \cap N_G^A = \omega(G)$$

and $[\langle y^2 \rangle, N_G^A] = E$. But in this case $\omega(G) \neq \omega(N_G^A)$, which contradicts Lemma 2. Therefore, $\langle y \rangle \cap N_G^A = \langle y^{2^{s-2}} \rangle$. Let $y_1 = y^{2^{s-3}}, y_1^2 = c^m h^k$, where $h \in H$. Let us consider $G_2 = \langle y_1 \rangle N_G^A$. Since

$$[\langle y_1 \rangle, N_G^A] \subseteq \langle y_1 \rangle \omega(G) \cap N_G^A = \langle y_1^2 \rangle \omega(G),$$

we have $\langle y_1^2 \rangle \lhd G_2$. Thus either $m \equiv 0 \pmod{2}$ and (k,2) = 1, or $k \equiv 0 \pmod{2}$ and (m, 2) = 1.

In the first case $y_1^2 = c^{2m_1}h^k$, (k,2) = 1. Let consider the quotient-group $\overline{G} =$ $G/\omega(G)$. By the proved above,

$$[\langle \overline{y}_1 \rangle, \overline{N_G^A}] \subseteq \langle \overline{y}_1 \rangle \cap \overline{N_G^A} = \langle \overline{y}_1^2 \rangle = \langle \overline{h} \rangle.$$

Let h_1 be an element of the subgroup H which is not permutable with h. Then $[\langle \overline{h}_1 \rangle, \langle \overline{y}_1 \rangle] = \langle \overline{y}_1^{2l} \rangle = \langle \overline{h}^{kl} \rangle$. If (l, 2) = 1, then $\langle \overline{y}_1, \overline{h}_1 \rangle$ is a dihedral group and $|\overline{y}_1\overline{h}_1| = 2$. By Lemma 1 $\langle \overline{y}_1\overline{h}_1 \rangle \triangleleft \overline{G_2}$ and therefore $\overline{G_2} = \overline{N_G^A} \times \langle \overline{y}_1\overline{h}_1 \rangle$. Hence $[\overline{y}_1\overline{h}_1,\overline{h}_1] = [\overline{y}_1,\overline{h}_1] = 1$, which is impossible. Thus $(l,2) \neq 1$ and $[\overline{h}_1,\overline{y}_1] = 1$. But then $[h_1, y_1] \in \omega(N_G^A)$, $[h_1, y_1^2] = [h_1, h] = 1$, which contradicts the choice of h_1 . Thus $y_1^2 = c^m h^{2k_1}$, where (m, 2) = 1, and [y, c] = 1. Hence the elements of order

greater then 4 are contained in the centralizer C.

Let $x \notin C$. Then |x| = 4. Taking into account [G:C] = 2, we conclude that $G = C\langle x \rangle$, where $x^2 \in \omega(G)$, $[\langle x \rangle, N_G^A] \subseteq \omega(G)$. By the proved above, the norm N_G^A contains all elements of order 4 of the centralizer C, i.e. $N_G^A = \omega_2(C)$. If $\exp C = 4$, then $N_G^A = C$ and $G = N_G^A \cdot \langle x \rangle$. By Lemma 6 G is an $\overline{HA_2}$ -group which does not coincide with N_G^A , which is impossible. Thus $\exp C > 4$.

Since the norm N_C^A of the subgroup C contains N_G^A and $c \in Z(C)$, the norm N_C^A is a group of one of the types:

1) $N_C^A = \langle y \rangle \times H, \ |y| = 2^n, \ n \ge 3, \ y^{2^{n-2}} = c;$

2) $N_C^A = \langle y \rangle > H$, $[\langle y \rangle, H] = \langle y^{2^{n-1}} \rangle$, $|y| = 2^n$, $n \ge 3$, $y^{2^{n-2}} = c$. By Lemma 9, $N_C^A = C$. Let's consider each of these cases separately.

(1) Let $C = N_C^A = \langle y \rangle \times H$, then $G = (\langle y \rangle \times H) \langle x \rangle$, $x^2 \in C$. Let's consider the quotient group $\overline{G} = G/\omega(G) \cong (\langle \overline{y} \rangle \times \overline{H}) \langle \overline{x} \rangle$. Since $\langle \overline{y} \rangle = \overline{Z(C)}$, the subgroup $\langle \overline{y}, \overline{x} \rangle$ contains a cyclic subgroup of index 2. Therefore the following relations are possible between \overline{x} and \overline{y} .

If $[\overline{y}, \overline{x}] = 1$, then $G' \subseteq \omega(G)$ and G is an $\overline{HA_2}$ -group, which contradicts $G \neq N_G^A$. If $\overline{x}^{-1}\overline{yx} = \overline{y}^{-1}\overline{y}^{2^{n-2}}$, $n \geq 4$, then turning to the preimages $x^{-1}yx = y^{-1}cz$, where $z \in \omega(G)$. Therefore $x^{-2}yx^{\overline{2}} = x^{-1}y^{-1}czx = yc^{-2}$, which contradicts $x^2 \in Z(G)$. If $\overline{x^{-1}\overline{yx}} = \overline{yy}^{2^{n-2}}$, where $n \ge 4$, then $|y| \ge 16$, $x^{-1}yx = ycz$, where $z \in \omega(G)$,

and $x^{-1}y^2x = y^2c^2$. Since $c \in \langle y \rangle$, $y^2 = c$ and |y| = 8, which is impossible.

Thus $G = H \cdot Q$ is a group of the type (2) of Theorem 2, where one of the groups H or Q is a generalized quaternion group of order greater than 8, and the other one is the quaternion group, $[H, Q] \subseteq \omega(G)$.

(2) Let $C = N_C^A = \langle y \rangle \land H$, $[\langle y \rangle, H] = \langle y^{2^{n-1}} \rangle$, $|y| = 2^n$, $n \ge 3$, $y^{2^{n-2}} = c$. Let us consider the quotient-group

$$\overline{G} = G/\omega(G) \cong (\langle \overline{y} \rangle \setminus \overline{H}) \langle \overline{x} \rangle,$$

where $[\overline{H}, \langle \overline{x} \rangle] = E$, $[\langle \overline{y} \rangle, \langle \overline{x} \rangle] \subseteq \langle \overline{y}, \overline{H} \rangle$. Let $\overline{x}^{-1} \overline{y} \overline{x} = \overline{y}^{\alpha} \overline{h}^{\beta}$, where $\overline{h} \in \overline{H}$. Then by the condition $[\overline{x}^2, \overline{y}] = 1$, we have

$$\overline{x}^{-2}\overline{y}\overline{x}^2 = (\overline{y}^{\alpha}\overline{h}^{\beta})^{\alpha}\overline{h}^{\beta} = \overline{y}^{\alpha^2}\overline{h}^{\beta(\alpha+1)} = \overline{y}.$$

If $\beta \equiv 1 \pmod{2}$, then $\alpha^2 \equiv 1 \pmod{2^{n-1}}$ and $\alpha = \pm 1 + 2^{n-1}t$ or $\alpha = \pm 1 + 2^{n-2}t$. It is easy to verify that in each case $[h_1, (xy)^2] \neq 1$ for the element $h_1 \in H$ which is not permutable with h. On the other hand, $[h_1, x] \in \omega(G)$, $[h_1, y] \in \omega(G)$. Thus, $[h_1, xy] \in \omega(G)$ and $[h_1, (xy)^2] = 1$. We get a contradiction.

Thus $\beta \equiv 0 \pmod{2}$ and $\langle \overline{y} \rangle \triangleleft \overline{G}$. Repeating the above proof we get that $\overline{x}^{-1}\overline{yx} = \overline{y}^{-1}$. Then $G = \langle y \rangle G_1$, where $G_1 = N_G^A \langle x \rangle$ is an $\overline{HA_2}$ -group, which is a direct or a semi-direct product of two quaternion groups. Thus $G = H \cdot Q$ is a group of the type (2) of Theorem 2.

Suppose that $\langle c \rangle \not \lhd G$. Hence $[\langle c \rangle, G] \subseteq \omega(G)$.

Let x be an element of G, $|x| \ge 8$. If $\langle x \rangle \bigcap N_G^A \subseteq \omega(G)$, then

$$[\langle x \rangle, N_G^A] \subseteq \langle x \rangle \omega(G) \bigcap N_G^A = \omega(G)$$

and $[\langle x^2 \rangle, N_G^A] = E$. Hence $G_1 = \langle x^2 \rangle N_G^A$ is an $\overline{HA_2}$ -group which has two central cyclic subgroups $\langle x \rangle$ and $\langle c \rangle$ of order 4, which contradicts the description of $\overline{HA_2}$ -groups. Thus, $x^{2^k} = c^{\alpha} h^{\beta}$ (where either α or β is not divisible by 2) and

$$[\langle x \rangle, N_G^A] \subseteq \langle x^{2^k} \rangle \omega(G).$$

Since $\langle x^2 \rangle \triangleleft G_1$, either $\alpha \equiv 0 \pmod{2}$ and $\beta \equiv 1 \pmod{2}$, or $\alpha \equiv 1 \pmod{2}$ and $\beta \equiv 0 \pmod{2}$.

If $\alpha \equiv 0 \pmod{2}$ and $\beta \equiv 1 \pmod{2}$, then $[\langle x \rangle, N_G^A] \subseteq \omega(G)$ and $[x^2, h_1] = 1$. On the other hand, $[x^2, h_1] = [c^{2\alpha}h^{\beta}, h_1] = [h^{\beta}, h_1] \neq 1$. We get a contradiction. Thus $x^{2^k} = c^{\alpha}h^{2\beta}$, where $(\alpha, 2) = 1$. Hence [x, c] = 1 and $\langle x \rangle \bigcap N_G^A = \langle ch^{2\beta} \rangle$, where $\beta \in \{0, 1\}$.

Let denote $N = N_G(\langle c \rangle)$. It is clear that $N \supseteq N_G^A$ and for any element $y \in G$ $|y| \ge 8, y \in N$. If $N \ne G$, then an element $a \in G \setminus N$ exists, $|a| = 4, a^2 \in \omega(G)$, $[\langle a \rangle, N_G^A] \subseteq \omega(G)$.

Let $a, b \notin N$. Then $[a, c] = c^{2r}h^2$, $[b, c] = c^{2s}h^2$. Hence $[ab, c] \in \langle c \rangle$ and $ab \in N$. It is easy to verify that $a^{-1}N = aN = bN$. Hence [G:N] = 2 and $N \triangleleft G$, $G = N \langle a \rangle$, $a^2 \in \omega(N_G^A)$.

By the proved above, the subgroup N is a product of the quaternion group of order 8 and a generalized quaternion group of order equal or greater than 16: $N = H \cdot Q$, |H| = 8, $|Q| \ge 16$, $H = \langle h_1, h_2 \rangle$, $Q = \langle y, x \rangle$, $|y| = 2^n > 4$, $y^{2^{n-2}} = c$, $[H, Q] \subseteq \omega(G)$.

If |y| > 8, then $N' = \langle y^2 \rangle \times \langle h^2 \rangle \lhd G$ and $\langle y^4 \rangle \lhd G$, $\langle c \rangle \lhd G$, which contradicts the assumption. Thus, |y| = 8.

Let us consider the quotient-group

$$G/N_G^A \cong (\langle \overline{y} \rangle \times \langle \overline{x} \rangle) \langle \overline{a} \rangle,$$

 $|\overline{y}| = |\overline{x}| = |\overline{a}| = 2$. If G/N_G^A is non-Abelian, then it is a dihedral group and contains an element $\langle \overline{at} \rangle$ of order 4, where $\overline{t} \in \langle \overline{y}, \overline{x} \rangle$. It is clear that |at| > 4. Hence $at \in N$ and $a \in N$, which is impossible. Thus the quotient-group G/N_G^A is Abelian,

 $[\overline{N}, \langle \overline{a} \rangle] = 1$ and $[y, a] = c^k h^m$. If $m \equiv 0 \pmod{2}$, then $[y^2, a] = c^{2k} \in \langle c \rangle$, which is impossible because $a \in N$. Thus m = 1 and $[y, a] = c^k h$. Hence

$$(ya)^2 = ya^2yc^kh = c^{1+k}hz,$$

 $z \in \omega(G)$. On the other hand, since |ya| > 4, $\langle ya \rangle \cap N_G^A \subseteq \langle c \rangle \omega(G)$ by the proved above. We get a contradiction.

The theorem is proved.

Corollary 6. A group G of type α does not contain a quaternion subgroup if and only if the norm N_G^A does not contain such a subgroup.

4 Finite 2-groups with cyclic center and a non-Dedekind nonmetacyclic norm of Abelian non-cyclic subgroups (groups of type β)

Lemma 11. Let G be a finite 2-group with a non-Dedekind norm N_G^A of Abelian non-cyclic subgroups which is a group of one of the types (4)-(8) of Proposition 2. Then the center Z(G) of the group G is non-cyclic.

Proof. Let N_G^A be a group of one of the types which have been noted in the condition of the lemma. Then the center $Z(N_G^A)$ of the norm N_G^A is non-cyclic. If the norm N_G^A is a group of type (6) of Proposition 2, then $\omega(N_G^A) \subseteq Z(G)$ and the group G has the non-cyclic center.

So we will assume that N_G^A is a group of one of types (4)-(5) or (7)-(8). In each of these cases $\omega(N_G^A)$ is an elementary Abelian subgroup of order 4. Since $\omega(N_G^A) \subseteq Z(N_G^A)$, we have $\omega(N_G^A) = \omega(G)$ by Lemma 2.

Suppose $\omega(N_G^A) \not\subset Z(G)$, contrary to the conditions of the lemma. Then

$$\omega(N_G^A) \cap Z(G) \neq E$$

by the condition $\omega(N_G^A) \triangleleft G$. Let $\omega(N_G^A) = \langle a_1 \rangle \times \langle a_2 \rangle$, $|a_1| = |a_2| = 2$, where $a_1 \in Z(G)$ and $a_2 \notin Z(G)$.

Let's denote $C = C_G (\omega(N_G^A))$. Then $G = C \cdot \langle y \rangle$, $|y| > 4, y^2 \in C$ by Lemma 3. Since $N_C^A \subset C$, $N_G^A \subseteq N_C^A$ and C contains all Abelian non-cyclic subgroups of G, $N_G^A = N_C^A$. Since the norm N_C^A is non-metacyclic and Z(C) is non-cyclic, C is either a non-metacyclic non-Dedekind \overline{HA}_2 -group by Theorem 2 and $C = N_C^A = N_G^A$, or $C = H \cdot Q$ is a product of the quaternion group $H = \langle h_1, h_2 \rangle$ of order 8 and a generalized quaternion group $Q = \langle t, q \rangle$, $|t| = 2^k > 8$, $t^{2^{k-1}} = q^2$, $q^{-1}tq = t^{-1}$, $[H, Q] \subseteq \omega(C)$ and $N_C^A = N_G^A = \langle t^{2^{k-2}} \rangle \times H$.

In the previous case N_G^A is a group of type (6) of Proposition 2, which contradicts the proved above.

Thus we will assume that $C = N_G^A$ and $G = N_G^A \cdot \langle y \rangle$, where $y^2 \in N_G^A$. In this case N_G^A is a non-Dedekind \overline{HA}_2 -group of exponent 4. So |y| = 8, $y^4 = a_1 \in Z(G)$

by Lemma 4. It is also easy to prove that the norm N_G^A contains all elements of order 4 of the group G.

Let's consider the quotient-group

$$\overline{G} = G/\omega(G) \cong \overline{N_G^A} \cdot \langle \overline{y} \rangle, \overline{y}^2 \in \overline{N_G^A},$$

where $|\overline{y}| = 4$. Since $\omega(\overline{G}) = \overline{N_G^A} \triangleleft \overline{G}$, $\left|\overline{N_G^A}\right| \ge 8$ and \overline{y} induces an automorphism of order 2 on $\omega(\overline{G})$, there is an involution \overline{z} such that $\langle \overline{y} \rangle \cap \langle \overline{z} \rangle = \overline{E}$ and $[\overline{z}, \overline{y}] = 1$ in $\omega(\overline{G})$. Turning to the preimages, we have [z, y] = a, where $a \in \omega(G)$. Since $[z^2, y] = 1$, we conclude that $z^2 = a_1$. Let $a \in \langle a_1 \rangle$, then $[z, y^2] = 1$ and $|y^2 z| = 2$. But in this case $y^2 \in \langle z \rangle \omega(G)$ and the intersection $\langle \overline{y} \rangle \cap \langle \overline{z} \rangle$ is non-identity in the quotient-group \overline{G} . It is a contradiction. Thus, $a \notin \langle a_1 \rangle$ and we can assume without loss of generality that $a = a_2$. Then $y^{-1}zy = za_2$, $[z, y^2] = z^2 = a_1$, and $\langle y^2, z \rangle$ is the quaternion group, which is impossible if the norm N_G^A is a group of type (4) or (5) of Proposition 2.

Let N_G^A contain the quaternion group, i.e. N_G^A is a group of type (7) or (8) of Proposition 2. Then $N_G^A = H \cdot Q$ is a direct or a semidirect product of two quaternion groups H and Q, $[H, Q] \subseteq Q^2$.

Then in the group $G = N_G^A \cdot \langle y \rangle$ the subgroup $\langle y^2, a_2 \rangle$ is Abelian non-cyclic by the inclusion $\omega(N_G^A) \subseteq Z(N_G^A)$ and therefore $\langle y^2, a_2 \rangle$ is a normal subgroup in G. The subgroup $\widetilde{N_G^A}$ is elementary Abelian of order 8 in the quotient-group

$$\widetilde{G} = G/\left\langle y^2, a_2 \right\rangle \cong \widetilde{N_G^A} \setminus \left\langle \widetilde{y} \right\rangle.$$

Since \tilde{y} induces an automorphism of order 2 on N_G^A , it is always possible to point out involutions $\tilde{z_1}$, $\tilde{z_2} \in \widetilde{N_G^A}$ which are permutable with \tilde{y} . Turning to preimages we get that $[z_i, y] = y^{2m_i} a^{s_i}$, i = 1, 2.

If $s_1 = s_2 = 1$, then $[z_1 z_2, y] = y^{2t}$. If (t, 2) = 1, then $|yz_1 z_2| \le 4$ and $y \in N_G^A$ by the proved, which is impossible. Thus $t = 2t_1$ and $[z_1 z_2, y] = y^{4t_1} \in Z(G)$. But

$$[z_1 z_2, y^2] = [(z_1 z_2)^2, y] = 1$$

by such conditions. From the second part of the equality we have $(z_1z_2)^2 = a_1 = y^4$ and $|z_1z_2y^2| = 2$, which contradicts the structure of the norm N_G^A .

Thus we can assume that at least one of numbers $s_i = 0$. But then $[z_i, y] = y^{2m_i}$ and we again get a contradiction repeating the above argument. In this case G = Cand $\omega \left(N_G^A \right) \subseteq Z(G)$.

Theorem 3. *G* is a group of type β if and only if it is a group of one of the following types:

1) G is a non-metacyclic non-Hamiltonian $\overline{HA_2}$ -group with a cyclic center, $G = N_G^A$; 2) $G = (\langle x \rangle \land \langle b \rangle) \land \langle c \rangle$, $|x| = 2^n, n > 3$, |b| = |c| = 2, $[x, c] = x^{\pm 2^{n-2}}b$, $[b, c] = [x, b] = x^{2^{n-1}}$, $N_G^A = (\langle x^2 \rangle \times \langle b \rangle) \land \langle c \rangle$;

$$\begin{array}{l} 3) \ G = (\langle x \rangle \times \langle b \rangle) \land \langle c \rangle \land \langle d \rangle, \ |x| = 2^n, n > 2, \ |b| = |c| = |d| = 2, [x,c] = [x,b] = \\ 1, \ [b,c] = [c,d] = [b,d] = x^{2^{n-1}}, \ d^{-1}xd = x^{-1}, \ N_G^A = \left(\left\langle x^{2^{n-2}} \right\rangle \times \langle b \rangle\right) \land \langle c \rangle; \\ 4) \ G = (\langle c \rangle \land H) \langle y \rangle, H = \langle h_1, h_2 \rangle, \ |h_1| = |h_2| = 4, h_1^2 = h_2^2 = [h_1, h_2], |c| = 4, \\ [c,h_1] = c^2, \ [c,h_2] = 1, \ y^2 = h_1, [y,h_2] = c^2 h_1^2, \ [y,c] = h_2^{\pm 1}, N_G^A = \langle c \rangle \land H. \end{array}$$

Proof. Let a group G and its norm of Abelian non-cyclic subgroups satisfy the conditions of the theorem. Let's continue the proof of the theorem in the following lemmas.

Lemma 12. Let G be a finite 2-group and its norm N_G^A of Abelian non-cyclic subgroups be a group of type (10) of Proposition 2. Then all Abelian non-cyclic subgroups are normal in G and $G = N_G^A$.

Proof. Let N_G^A be a group of type (10) of Proposition 2, i.e.

$$N_G^A = (H \times \langle a \rangle) \langle b \rangle$$

where $H = \langle h_1, h_2 \rangle$, $|h_1| = |h_2| = 4$, |a| = 2, |b| = 8, $b^2 = h_1$, $[h_2, b] = a$, $[a, b] = [h_1, h_2] = h_1^2 = h_2^2$. In particular, $\omega \left(N_G^A\right) = \langle h_1^2, a \rangle$ and $Z \left(N_G^A\right) = \langle h_1^2 \rangle \subset Z(G)$. N_G^A contains all elements of order 2 of the group G by Lemma 3 and $\omega \left(N_G^A\right) = \langle N_G^A \rangle$.

 N_G^A contains all elements of order 2 of the group G by Lemma 3 and $\omega (N_G^A) = \omega (G)$. Let's denote $C = C_G (\omega(G))$. Then [G:C] = 2 and $G = C \langle b \rangle, b^2 \in C$. By the proved above, the lower layer $\omega (N_G^A)$ contains all involutions of the centralizer C, so the quotient-group $\overline{C} = C/\langle a \rangle$ contains only one involution by Lemma 4. Since \overline{C} is non-Abelian, \overline{C} is a quaternion 2-group:

$$\overline{C} \cong \overline{Q} = \langle \overline{x}, \overline{y} \rangle \,,$$

 $|\overline{x}| = 2^n \ge 4, \ |\overline{y}| = 4, \ \overline{x}^{2^{n-1}} = \overline{y}^2, \ \overline{y}^{-1}\overline{x}\overline{y} = \overline{x}^{-1}.$

Turning to the preimages and taking into account Lemma 4, we have that $x^{2^{n-1}} = y^2 = h_1^2$, $y^{-1}xy = x^{-1}a^m$, $m \in \{0, 1\}$. If m = 1, then $y^{-1}xy = x^{-1}a$ and $(xy)^2 = h_1^2a \notin \langle h_1^2 \rangle$, which is impossible. Therefore m = 0, $y^{-1}xy = x^{-1}$ and

$$C = Q \times \langle a \rangle \,.$$

We can assume, without loss of generality, that $H \subseteq Q$, $h_1 \in \langle x \rangle, \langle h_2 \rangle = \langle y \rangle$. If |Q| > 8, then $h_2 \notin N_G(\langle a, xh_2 \rangle)$, which is impossible, because $h_2 \in N_G^A$. Thus $Q = H, C = H \times \langle a \rangle \subset N_G^A$ and

$$G = C\langle b \rangle = N_G^A$$

Lemma 13. If a finite 2-group G has the norm N_G^A of Abelian non-cyclic subgroups which is a group of type (3) of Proposition 2, then $G = N_G^A$.

Proof. Let a group G and its norm N_G^A satisfy the conditions of the lemma,

$$N_G^A = (H \times \langle b \rangle) \setminus \langle c \rangle,$$

where $H = \langle h_1, h_2 \rangle$, $|h_1| = |h_2| = 4$, $[h_1, h_2] = h_1^2 = h_2^2$, |b| = |c| = 2, $[H, \langle b \rangle] = [H, \langle c \rangle] = E$, $[b, c] = h_1^2$.

Suppose that $G \neq N_G^A$ and let's prove that N_G^A contains all involutions of the group G. Indeed, otherwise we have $\langle z, h_1^2 \rangle \triangleleft G_1 = \langle z \rangle N_G^A$ for any involution $z \in G \setminus N_G^A$. Therefore $[G_1 : C_{G_1}(\langle z, h_1^2 \rangle)] \leq 2$ and $G_1 \setminus \langle h_1^2 \rangle$ contains an involution $y \neq h_1^2$ which is permutable with z. So,

$$\langle y, z \rangle \cap N_G^A = \langle y \rangle \triangleleft N_G^A,$$

which is impossible. Hence all involutions of a group G are contained in N_G^A .

Suppose that an element x of order 4 exists in $G \setminus N_G^A$. By Lemma 4 $x^2 = h_1^2$. Thus any element a of order 4 of the norm N_G^A is not permutable with x, otherwise |ax|=2 and $x \in N_G^A$ by the proved above. Let's denote $G_2 = \langle x \rangle N_G^A$ and consider the quotient-group $\overline{G_2} = G_2 / \langle h_1^2 \rangle$. Since $\overline{N_G^A}$ is an elementary Abelian group of order 16, normal in $\overline{G_2}$ and \overline{x} induces an automorphism of order 2 on $\overline{N_G^A}$, there exist involutions $\overline{y_1}, \overline{y_2} \in \overline{N_G^A}$, $\langle \overline{y_1} \rangle \cap \langle \overline{y_2} \rangle = \overline{E}$, which are permutable with \overline{x} . Turning to the preimages we will have $[x, y_i] \in \langle h_1^2 \rangle$, i = 1, 2. It is easy to prove that the group $\langle y_1, y_2 \rangle$ contains an involution $y \neq h_1^2$ which is permutable with x. Then $\langle x, y \rangle \triangleleft G_2$ as an Abelian non-cyclic subgroup and

$$G'_2 \subseteq \langle x, y \rangle \cap N^A_G = \langle y, h^2_1 \rangle.$$

Let t be an arbitrary non-central involution of N_G^A which differs from y. Let's put

$$[x,t] = y^m h_1^{2k}, m, k \in \{0,1\}.$$

Then $[x,t^2] = h_1^{2m}$. On the other hand, $[x,t^2] = 1$, therefore m = 0 and $[\langle x \rangle, N_G^A] \subseteq \langle h_1^2 \rangle$. However in this case the group G_2 will contain an involution which does not belong to N_G^A , that contradicts the proved above. Therefore N_G^A contains all elements of order 4 of the group G.

According to the assumption $G \neq N_G^A$, we conclude that there is an element $x \in G \setminus N_G^A$, |x| = 8. Since $x^2 \in N_G^A$, $|x^2| = 4$ and all cyclic subgroups of order 4 are normal in N_G^A , we have

$$\langle x^2 \rangle \triangleleft G_3 = \langle x \rangle N_G^A.$$

Let's consider the quotient-group $\overline{G_3} = G_2/\langle x^2 \rangle$. Since $\overline{N_G^A}$ is a normal elementary Abelian group of order 8 and \overline{x} induces an automorphism of order 2 on it, there exist involutions $\overline{y_1}$, $\overline{y_2} \in \overline{N_G^A}$, $\langle \overline{y_1} \rangle \cap \langle \overline{y_2} \rangle = \overline{E}$, which are permutable with \overline{x} . Turning to the preimages we get $[x, y_i] \in \langle x^2 \rangle$, i = 1, 2. It is easy to check that $[x, y_i] \in \langle h_1^2 \rangle$ and the group $\langle x^2, y_1, y_2 \rangle$ contains an involution y which is permutable with x. Then $\langle x, y \rangle \triangleleft G_3$ as an Abelian non-cyclic subgroup and

$$G'_3 \subseteq \langle x, y \rangle \cap N^A_G = \langle y, x^2 \rangle.$$

Let $[x,t] = x^{2m}y^k$, where t is an arbitrary non-central involution of N_G^A which differs from y. Since N_G^A contains all elements of order 4, $[x,t] \in \langle h_1^2 \rangle$ by the condition $[x,t^2] = 1$. But then $[x^2,t] = 1$ and $x^2 \in Z(G_3)$, which is impossible, because the norm N_G^A does not contain non-central elements of order 4. This contradiction proves that $G = N_G^A$.

Lemma 14. If a finite 2-group G has a non-Dedekind norm $N_G^A \neq G$ which is a group of type (1) of Proposition 2, then G is a group of one of types (2) or (3) of Theorem 3.

Proof. Let $G \neq N_G^A$ and

 $N_G^A = \left(\langle a \rangle \times \langle b \rangle \right) \land \langle c \rangle \,,$

where $|a| = 2^n$, $n \ge 2$, |b| = |c| = 2, [a, c] = [a, b] = 1, $[b, c] = a^{2^{n-1}}$. Since $N_G^A \triangleleft G$, the intersection $\overline{N_G^A} \cap Z(\overline{G}) \neq \overline{E}$ in the quotient-group $\overline{G} = G/\langle a \rangle$. We can assume without loss of generality that $\overline{b} \in Z(\overline{G})$. Then $\langle a, b \rangle \triangleleft G$, $\omega(\langle a, b \rangle) = \langle a^{2^{n-1}}, b \rangle \triangleleft G$.

Let's denote $C = C_G\left(\left\langle a^{2^{n-1}}, b\right\rangle\right)$. Then $C \triangleleft G$, [G:C] = 2 and $G = C \land \langle c \rangle$, where $c \in N_G^A$, |c| = 2. By Lemma 4 the quotient-group $\overline{C} = C/\langle b \rangle$ has only one involution and \overline{C} is a cyclic group or a generalized quaternion group.

Let \overline{C} be cyclic, then its full preimage $C = \langle x \rangle \times \langle b \rangle$ is Abelian and

$$[x,c] \in C \cap N_G^A = \langle a, b \rangle \,.$$

Let's put $[x, c] = a^m b^k$. If |[x, c]| = 2, then $G' \subset \langle a^2 \rangle$ and G is an $\overline{HA_2}$ -group, contrary to the assumption. Thus |[x, c]| > 2. If |a| = 4, then $[x, c] = a^{\pm 1}b$ by the condition $[x, c^2] = 1$, so $(xc)^2 \in Z(G)$ and $|x| \leq 8$. So $x^2 = a^{\pm 1}b$. However, $c \notin N_G(\langle a^2 \rangle \times \langle xbc \rangle)$ by such conditions, i.e. $c \notin N_G^A$, which is impossible.

Let |a| > 4, then $m = 2^{n-2}m_1$, where $(m_1, 2) = 1$, (k, 2) = 1. Thus $[x, c] = a^{\pm 2^{n-2}}b$, $(xc)^2 = x^2 a^{\pm 2^{n-2}}b$ and $(xc)^2 \in Z(G)$. Since $Z(G) = \langle a \rangle$ and |x| > |a| by the previous reasoning, $(xc)^2 = a$. Let's denote xc = y. Then $|y| = 2^{n+1}$, $[y, b] = y^{2^n}$, $[y, c] = y^{\pm 2^{n-1}}b$ and

$$G = (\langle y \rangle \land \langle b \rangle) \land \langle c \rangle$$

is a group of type (2) of Theorem 3.

Let \overline{C} be a generalized quaternion group $\overline{C} = \langle \overline{h_1}, \overline{h_2} \rangle$, where $|\overline{h_1}| = 2^n$, $n \ge 2$, $|\overline{h_2}| = 4$, $\overline{h_1}^{2^{n-1}} = \overline{h_2}^2$, $\overline{h_2}^{-1}\overline{h_1h_2} = \overline{h_1}^{-1}$. Let h_1 and h_2 denote the preimages of elements $\overline{h_1}$ and $\overline{h_2}$, respectively. Since the center Z(G) is cyclic, $h_1^{2^{n-1}} = h_2^2 = a^{2^{n-1}}$, $h_2^{-1}h_1h_2 = h_1^{-1}b^m$, $m \in \{0,1\}$, by Lemma 4. If $m \ne 0$, then

$$(h_1h_2)^2 = h_2^2b = a^{2^{n-1}}b,$$

which contradicts Lemma 4. Thus m = 0, $C = H \times \langle b \rangle$, $H = \langle h_1, h_2 \rangle$ is a generalized quaternion group. We also note that $\langle a \rangle \subseteq \langle h_1 \rangle$ by the condition $\langle a \rangle \lhd G$.

Since

$$[h_2, c] \in \langle h_2, b \rangle \cap \langle b, c \rangle = \left\langle a^{2^{n-1}}, b \right\rangle$$

and $[h_2, c^2] = 1$, we conclude that $[h_2, c] \in \langle a^{2^{n-1}} \rangle$. Then one of the elements h_2c or h_2bc is of order 2, and hence one of the subgroups $\langle h_2c, a^{2^{n-1}} \rangle$ or $\langle h_2bc, a^{2^{n-1}} \rangle$ is elementary Abelian. Since $\langle a \rangle \subseteq N_G^A$, the element *a* has to normalize these subgroups, which is possible only if |a| = 4.

Based on the fact that $\langle h_1 h_2 \rangle \times \langle b \rangle$ is an Abelian non-cyclic subgroup, we have

$$[h_1h_2, c] \in (\langle h_1h_2 \rangle \times \langle b \rangle) \cap N_G^A = \langle a^2, b \rangle.$$

It is easy to prove that $[h_1h_2, c] \in \langle a^2 \rangle$ by Lemma 4. It also follows that $[h_1, c] \in \langle a^2 \rangle$. Thus $[H, N_G^A] = \langle a^2 \rangle$.

Let's denote $B = \langle b, c \rangle$. Since B is a 2-generated non-Abelian subgroup and the commutant $[B, G] \subseteq \langle a^2 \rangle$ is of order 2, we have $G = BC_G(B)$ by [10]. We can assume without loss of generality that $H = C_G(B)$. If |H| = 8, then G is an $\overline{HA_2}$ -group, which contradicts the assumption. So |H| > 8 and G is a group of type (3) of Theorem 3.

Lemma 15. If a finite 2-group G has the norm $N_G^A \neq G$ which is a group of type (9) of Proposition 2, then G is a group of type (4) of Theorem 3.

Proof. Let N_G^A be a group of type (9) of Proposition 2: $N_G^A = \langle c \rangle > H$, where $H = \langle h_1, h_2 \rangle$, $|h_1| = |h_2| = 4$, $h_1^2 = h_2^2 = [h_1, h_2]$, $|c| = 2^n > 2$, $[c, h_1] = c^{2^{n-1}}$, $[c, h_2] = 1$.

Suppose that $N_G^A \neq G$. Since $\omega(N_G^A) \subset Z(N_G^A)$ and $\omega(N_G^A) \notin Z(G)$, we have $\omega(G) = \omega(N_G^A)$ by Lemma 2 and $G = C \langle y \rangle$, where $C = C_G(\omega(N_G^A)) \triangleleft G$, $y^2 \in C$, |y| > 4 by Lemma 4. The group C contains all Abelian non-cyclic subgroups of the group G, so

$$N_G^A \subseteq N_C^A \subseteq C.$$

Thus C is a 2-group which has the norm of Abelian non-cyclic subgroups of type (9) of Proposition 2 and the non-cyclic center. We conclude that C is an $\overline{HA_2}$ -group and

$$C = N_G^A = \langle c \rangle \ge H$$

by Theorem 2. Thus

$$G = C \langle y \rangle = (\langle c \rangle \land H) \langle y \rangle, |y| > 4, y^2 \in C.$$

Let $|y| = 2^k$. Since $y \notin C, \omega(G) \cap \langle y \rangle \subseteq Z(G)$. Let's denote $\langle a_1 \rangle = \omega(G) \cap \langle y \rangle$ and consider the quotient-group

$$\overline{G} = G/\omega\left(G\right) \cong \overline{C}\left\langle \overline{y} \right\rangle.$$

Since the lower layer $\omega(\overline{C})$ is an elementary Abelian subgroup of order 8 and $\omega(\overline{C}) \triangleleft \overline{G}$, we conclude that $\omega(\overline{C})$ contains an involution \overline{z} such that $[\overline{z}, \overline{y}] = \overline{1}$,

 $\langle \overline{z} \rangle \cap \langle \overline{y} \rangle = \overline{E}$. Turning to the preimages we put [z, y] = a, where $|a| = 2, a \in \omega(G)$. Then $[z^2, y] = 1$ and $z^2 = a_1 \in Z(G)$. If $a \in Z(G)$, then $[z, y^2] = 1$, $|y^{2^{k-2}}z| = 2$, which is impossible, because the elements of the order 4 of N_G^A do not have such property. Thus $a \notin Z(G)$ and $[z, y^2] = a_1$. It follows that $\langle z, y^2 \rangle$ is the quaternion group and |y| = 8.

If |c| > 4, then $a_1 = c^{2^{n-1}} \in Z(G)$ and $c^{2^{n-1}} \in \langle z, y^2 \rangle$. But any quaternion group in N_G^A does not contain $c^{2^{n-1}}$. This means that |c| = 4, $c^2 \notin Z(G)$ and $a_1 = h_1^2 \in \langle z, y^2 \rangle$. Taking into account the structure of the quaternion subgroups in N_G^A , we have $\langle z, y^2 \rangle = \langle h_2 c^{2m}, h_1 h_2^l c^s \rangle$. Suppose that $\langle y^2 \rangle \triangleleft G$. Then we can assume that $y^2 = h_2 c^{2m}, z = h_1 h_2^l c^s$. Let's

consider the quotient-group

$$\widetilde{G} = G/\left\langle y^2 \right\rangle \cong \left(\left\langle \widetilde{c} \right\rangle \land \left\langle \widetilde{h_1} \right\rangle \right) \land \left\langle \widetilde{y} \right\rangle.$$

Since $\langle \widetilde{c} \rangle$ is a characteristic subgroup in $\widetilde{N_G^A}$, $\langle \widetilde{c} \rangle \lhd \widetilde{G}$ and $[\widetilde{c}, \widetilde{y}] \in \langle \widetilde{c}^2 \rangle$. Turning to the preimages we have $[c, y] = c^{2r} y^{2i}$. So $[c^2, y] = h_2^{2i} \neq 1$ and $i \equiv 1 \pmod{2}$. It is easy to verify that in this case $|cy| \leq 4$, which contradicts the proved.

Thus $\langle y^2 \rangle \not \lhd G$. Then we can assume that $y^2 = h_1 h_2^l c^s$ and $z = h_2 c^{2m}$, respectively. Let's consider the quotient-group

$$\overline{G} = G/\omega(G) \cong \left(\langle \overline{c} \rangle \times \langle \overline{h_1} \rangle \times \langle \overline{h_2} \rangle \right) \langle \overline{y} \rangle.$$

Without loss of generality, $\langle \overline{y} \rangle \cap \overline{N}_G^A = \langle \overline{h_1} \rangle$ and $\overline{z} = \overline{h_2}$. Then $[\overline{y}, \overline{z}] = [\overline{y}, \overline{h_2}] = \overline{1}$ according to the choice of \overline{z} . We get

$$\left[\left\langle \overline{y} \right\rangle, \overline{N}_{G}^{A}\right] \subseteq \overline{N}_{G}^{A} \cap \left\langle \overline{y}, \overline{h_{2}} \right\rangle = \left\langle \overline{y}^{2}, \overline{h_{2}} \right\rangle = \overline{H}$$

by the condition $\langle \overline{y}, \overline{h_2} \rangle \lhd \overline{G}$. Thus $[y, h_2] = c^{2l} h_1^{2s}$ and $[y, c] = c^{2l_1} h_1^m h_2^r$. We have $l \neq 0 \pmod{2}$ by the first equality and the condition $[y, c^2] \neq 1$. We have $m \equiv 0$ (mod 2) and $r \neq 0 \pmod{2}$ by the second equality and the condition $[y, c^2] \neq 1$. Thus $[y, h_2] = c^2 h_1^{2s}$ and $[y, c] = c^{2l} h_2^{\pm 1}$. Further $l_1 \equiv s \pmod{2}$, because $[y^2, c] =$ c^2 .

We can assume without loss of generality that

$$G = C \langle y \rangle = (\langle c \rangle \succ H) \langle y \rangle,$$

where $H = \langle h_1, h_2 \rangle$, $|h_1| = |h_2| = 4$, $h_1^2 = h_2^2 = [h_1, h_2]$, |c| = 4, $[c, h_1] = c^2$, $[c, h_2] = 1$, $y^2 = h_1$, $[y, h_2] = c^2 h_1^2$, $[y, c] = h_2^{\pm 1}$. In this group all Abelian non-cyclic subgroups are contained in $\langle c \rangle > H$ and are normalized by this subgroup. At the same time $y \notin N_G^A$, because $y \notin N_G(\langle c, h_1^2 \rangle)$.

Theorem is proved.

Corollary 7. Any group G of type β is a cyclic or metacyclic extension of the norm N_G^A .

5 Acknowledgment

The authors would like to thank the referees for their very useful comments which improved the paper.

References

- [1] BAER R. Der Kern, eine Charakteristische Untergruppe. Comp. Math., 1934, 1, 254–283.
- BALLESTER-BOLINCHES A., COSSEY J., ZHANG L. Generalised norms in finite soluble groups. Journal of Algebra, 2014, 402(15), 392–405.
- [3] GONG L., ZHAO L., GUO X. On the Generalized Norm of a Finite Group. Journal of Algebra and its Applications, 2016, 15, no. 1, 1650008-9, 9 pp.
- [4] LIA SH., SHENB ZH. On the intersection of the normalizers of derived subgroups of all subgroups of a finite group. Journal of Algebra, 2010, **323**, 5, 1349–1357.
- [5] LUKASHOVA T. D. Finite 2-groups with non-Dedekind norm of non-cyclic subgroups. Proceedings of Francisk Scorina Gomel State University, 2001, 6, 3, 139–150.
- [6] LYMAN F. M. 2-groups with invariant non-cyclic subgroups. Mathematical Notes, 1968, 4, 1, 75–83.
- [7] LYMAN F. M. p-groups, all Abelian non-cyclic subgroups of which are invariant. Doklady AN USSR, 1968, 8, 696–699.
- [8] LYMAN F. M., LUKASHOVA T. D., DRUSHLYAK M. G. On finite 2-groups with non-Dedekind norm of Abelian non-cyclic subgroups. Matematychni Studii, 2016, 46, 1, 20–28.
- SHEN Z., SHI W., ZHANG J. Finite non-nilpotent generalizations of Hamiltonian groups. Bull. Korean. Math. Soc., 2011, 48, 6, 1147–1155.
- [10] SHERIEV V.A. Finite 2-groups with complemented non-invariant subgroups. Siberian Math. Journal, 1967, 8, 195–213.
- [11] WANG J. Finite Groups with a Cyclic Norm Quotient. Bull. Korean Math. Soc., 2007, 53, 2, 479–486.

FEDIR LYMAN Herasyma Kondratieva, 134, ap. 64, Sumy, 40021, Ukraine E-mail: mathematicsspu@gmail.com Received July 1, 2017

TETYANA LUKASHOVA Kotlyarevskoho, 2/7, ap.1, Sumy, 40013, Ukraine E-mail: tanyalukashova@gmail.com

MARINA DRUSHLYAK Lysenko, 12, ap.71, Sumy, 40013, Ukraine E-mail: marydru@fizmatsspu.sumy.ua