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Problem formulation. The APOS/ACE instructional treatment for learning and 

teaching mathematics was developed in the USA during the 1990’s by a team of 
mathematicians and mathematics educators led by Ed Dubinsky ([1, 2], etc]. The 
implementation of the ACE cycle and its effectiveness in helping students making mental 
constructions and learn mathematics has been reported in several research studies of the 
Dubinsky’s team (e.g. [17-19], etc) and by other researchers too (e.g. [5, 12], etc). 

The Fuzzy Sets Theory, due to its nature of characterizing the ambiguous cases of the 
evolution of a phenomenon with multiple values, offers rich resources for the assessment 
purposes (e.g. see the books [4.10], etc). In an earlier paper [13], we have used the Center of 
Gravity (COG) defuzzification technique [7] for comparing the performances of two student 
groups concerning the comprehension of the real numbers in general and the irrational 
numbers in particular. The first group was taught the subject in the traditional way (control 
group), while the APOS/ACE instructional treatment was applied for the second group 
(experimental group).  

In the present paper we describe an analogous experiment for comparing two 
university student groups’ performance in learning mathematics, where we have used as 
assessment tool a combination of Fuzzy Numbers (FNs) and the COG technique. The rest of 
the paper is formulated as follows: In Section 2 we give a brief account of the APOS/ACE 
theory, while in Section 3 we expose the basic concepts and properties of FNs and in 
particular of the Triangular Fuzzy Numbers (TFNs) [15], that we are going to use for our 
purposes. In Section 4 we present our classroom experiment, while our last Section 5 is 
dedicated to our conclusion and to a brief discussion about the perspectives of future 
research on the subject.  

The APOS/ACE Theory. APOS is a theory based on Piaget’s principle that an individual 
learns (e.g. mathematics) by applying certain mental mechanisms to build specific mental 
structures and uses these structures to deal with problems connected to the corresponding 



PHYSICAL & MATHEMATICAL EDUCATION    issue 1(7), 2016 
.  

30 

situations [6]. Thus, according to the APOS analysis, an individual deals with a mathematical 
situation by using certain mental mechanisms to build cognitive structures that are applied 
to the situation. These mechanisms are called interiorization and encapsulation and the 
related structures are Actions, Processes, Objects and Schemas. The first letters of the last 
four words constitute the acronym APOS.  

The theory postulates that a mathematical concept begins to be formed as one 
applies transformations on certain entities to obtain other entities. A transformation is first 
conceived as an action. For example, if an individual can think of a function only through an 
explicit expression and can do little more than substitute for the variable in the expression 
and manipulate it, he/she is considered to have an action understanding of functions. 

As an individual repeats and reflects on an action, this action may be interiorized to a 
mental process. A process performs the same operation as the action, but wholly in the 
mind of the individual enabling her/him to imagine performing the transformation without 
having to execute each step explicitly. For example, an individual with a process 
understanding of a function thinks about it in terms of inputs, possibly unspecified, and 
transformations of those inputs to produce outputs.  

When one becomes aware of a mental process as a totality and can construct 
transformations acting on this totality, then we say that the individual has encapsulated the 
process into a cognitive object. In case of functions encapsulation allows one to form sets of 
functions, to define operations on such sets, to equip them with a topology, etc.  

Although a process is transformed into an object by encapsulation, this is often 
neither easy nor immediate. This happens because encapsulation entails a radical shift in the 
nature of one’s conceptualization, since it signifies the ability to think of the same concept as 
a mathematical entity to which new, higher-level transformations can be applied. On the 
other hand, the mental process that led to a mental object through encapsulation remains 
still available and many mathematical situations require one to de-encapsulate an object 
back to the process that led to it. This cycle may be repeated one or more times. For 
example, in defining the sum f + g of two functions possessing a common domain, say A, it is 
necessary to reconsider again f and g at a process level and thinking of all x in A to obtain a 
new process associating to each x in A the sum f (x) + g(x). Then this new process must be 
encapsulated, in order to obtain the function f + g at an object level.  

A mathematical topic often involves many actions, processes and objects that need 
to be organized into a coherent framework that enables the individual to decide which 
mental processes to use in dealing with a mathematical situation. Such a framework is called 
a schema. In the case of functions, for example, it is the schema structure that is used to see 
a function in a given mathematical or real-world situation. However, one must notice that 
there are not any rubrics in general to assess explicitly the level of understanding (by 
students) of mathematics corresponding to each cognitive level (structure) of the APOS 
theory. This is in fact a matter depending on the instructor’s experience and intuition.  

The APOS theory has important consequences for education. Simply put, it says that 
the teaching of mathematics should consist of helping students use the mental structures 
they already have to develop an understanding of as much mathematics as those available 
structures can handle. For students to move further, teaching should help them to build 
new, more powerful structures for handling more and more advanced mathematics.  

Dubinsky and his collaborators realized that for each mental construction that comes 
out of an APOS analysis, one can find a computer task of writing a program or code, such 
that, if a student engages in that task, he (she) is fairly likely to build the mental construction 
that leads to learning the mathematics. In other words, performing the task is an experience 
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that leads to one or more mental constructions. As a consequence of the above finding, the 
pedagogical approach based on APOS analysis, known as the ACE teaching cycle, is a 
repeated cycle of three components: (A) activities on the computer, (C) classroom 
discussion and (E) exercises done outside the class. The target of the activities on the 
computer is to help students in building the proper mental constructions for the better 
understanding and learning of the corresponding mathematical topic. The students discuss 
later in the classroom their experiences from the computer tasks performed in the 
laboratory, they repeat the same tasks without the help of computer and they reach, under 
their instructor’s guidance and help, to the proper conclusions. Finally, the purpose of the 
exercises, which are given by the tutor as a home work, is to check and to embed better the 
new mathematical knowledge (for more details see [1, 2, 17], etc).  

Fuzzy Numbers. The fuzzy sets theory was created in response of expressing 
mathematically real world situations in which definitions have not clear boundaries. For 
example, “the high mountains of a country”, “the young people of a city”, “the good players 
of a team”, etc. The notion of a fuzzy set was introduced by Zadeh in 1965 [20] as follows:  

1. Definition: A fuzzy set A on the universal set U (or a fuzzy subset of U) is a set of 
ordered pairs of the form Α = {(x, mΑ(x)): xU}, defined in terms of a membership function 
mΑ : U   [0,1] that assigns to each element of U a real value from the interval [0,1].  

The value mΑ(x) us called the membership degree of x in A. The greater is mΑ(x), the 
better x satisfies the characteristic property of A. The definition of the membership function 
is not unique depending on the user’s subjective data, which is usually based on statistical or 
empirical observations. However, a necessary condition for a fuzzy set to give a reliable 
description of the corresponding real situation is that its membership function’s definition is 
compatible to the laws of the common logic. Note that many authors, for reasons of 
simplicity, identify a fuzzy set with its membership function. 

A crisp subset A of U can be consider as a fuzzy set in U with mΑ(x) = 1, if x A and 
mΑ(x) = 0, if x A. In this way most properties and operations of crisp sets can be extended 
to corresponding properties and operations of fuzzy sets. For general facts on fuzzy sets we 
refer to the book of Klir & Folger [4]. 

FNs play an important role in fuzzy mathematics, analogous to the role played by the 
ordinary numbers in classical mathematics. A FN is a special form of a fuzzy set on the set R 
of the real numbers defined as follows: 

2. Definition: A FN is a fuzzy set A on the set R of real numbers with membership 
function mA: R  [0, 1], such that: 

 A is normal, i.e. there exists x in R such that mA(x) = 1, 

 A is convex, i.e. all its a-cuts Aa = {xU: mA (x)   a}, a in [0, 1], are closed real 
intervals, and 

 The membership function y = mA (x) is a piecewise continuous function. 
3. Counter example: Figure 1 represents the graph of a fuzzy set on R which is not 

convex. In fact, it is easy to observe that A0.4 = [5, 8.5]   [11, 13], i.e. A0.4 is not a closed 
interval.  

Since the x-cuts of a FN, say A, are closed real intervals, we can write Ax = [ ,
x x

l rA A ] 

for each x in [0, 1], where ,
x x

l rA A  are real numbers depending on x. The following 

statement defines a partial order on the set of all FNs: 
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Fig. 1 . Example of a non convex fuzzy set on R 
 

4. Definition: Given the FNs A and B we write AB (or ) if, and only if, 
x x

l lA B and 
x x

r rA B  (or ) for all x in [0, 1]. Two such FNs are called comparable, otherwise they are 

called non comparable. 
5. Remark: One can define the four basic arithmetic operations on FNS in two, 

equivalent ways [3]: In practice, these two general methods of the fuzzy arithmetic, 
requiring laborious calculations, are rarely used in applications, where the utilization of 
simpler forms of FNs is preferred.  

For general facts on FNs we refer to Chapter 3 of the book of Theodorou [8], which is 
written in Greek language, and also to the classical on the subject book of Kaufmann and 
Gupta [3].- 

A TFN (a, b, c), with a, b, c in R is the simplest form of a FN. It actually means that the 
value of b lies in the interval [a, c]. The membership function of (a, b, c) is zero outside the 
interval [a, c], while its graph in [a, c] consists of two straight line segments forming a 
triangle with the OX axis (Figure 2). Therefore the analytical definition of a TFN is given as 
follows: 

6. Definition: Let a, b and c be real numbers with a < b < c. Then the TFN (a, b, c) is a 
FN with membership function: 
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Fig. 2. Graph and COG of the TFN (a, b, c) 
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The following two Propositions refer to basic properties of TFNs that we are going to 
use later in this paper:  

7. Proposition: The x-cuts Ax of a TFN A = (a, b, c), x [0, 1], are calculated by the 

formula Ax = [ ,
x x

l rA A ] = [a + x(b - a), c - x(c - b)] . 

Proof: Since Ax = {yR: m(y  x}, Definition 3.4 gives for the case of 
x

lA that  

y a

b a




= x y = a + x(b – a). Similarly for the case of 

x

rA we have that 
c y

c b




= x  

 y = c - x(c - b). 
8. Proposition: The coordinates (X, Y) of the COG of the graph of the TFN (a, b, c) are 

calculated by the formulas X = 
3

a b c 
, Y = 

1

3
.  

Proof: The graph of the TFN (a, b, c) is the triangle ABC of Figure 2, with A (a, 0),  
B(b, 1) and C (c, 0). Then, the COG, say G, of ABC is the intersection point of its medians AN 
and BM. The proof of the Proposition is easily obtained by calculating the equations of AN 
and BM and by solving the linear system of these two equations.-  

9. Remark: The above proposition provides a defuzzification method of a TFN, i.e. its 
replacement by a crisp quantity (the coordinates of the COG of its graph). 

10. Arithmetic Operations on TFNs: It can be shown [3] that the two general 
methods of defining arithmetic operations on FNs (see Remark 3.5) lead to the following 
simple rules for the addition and subtraction of TFNs: 

Let A = (a, b, c) and B = (a1, b1, c1) be two TFNs. Then 

 The sum A + B is the TFN (a+a1, b+b1, c+c1). 

 The difference A - B = A + (-B) is the TFN (a-c1, b-b1, c-a1), where –B = (-c1, -b1, -a1) 
is defined to be the opposite of B.  

Obviously A + (-A) = (a-c, 0, c-a)  O = (0, 0, 0), where the TFN O is defined by O(x) = 1, 
if x = 0 and O(x) = 0, if x  0. Note that, the product and the quotient of two TFNs, although 
they are FNs, they are not always TFNs, unless if a, b, c, a1, b1, c1 are in R+ ([25], Section 3.2). 

One can also define the following two scalar operations: 

 k + A= (k+a, k+b, k+c), kR 

 kA = (ka, kb, kc), if k>0 and kA = (kc, kb, ka), if k<0. 
 We close this section by introducing the following definition, which will be used in 

Section 4 for assessing the student performance with the help of the TFNs: 

11. Definition: Let Ai , i = 1, 2,…, n be TFNs, where n is a non negative integer, n 2. 
Then we define the mean value of the Ai’s to be the TFN  

A= 
1

n
(A1 + A2 + …. + An). 

The Classroom Experiment. The following experiment was recently performed in the 
city of Patras with two student groups from the School of Technological Applications 
(prospective engineers) of the Graduate Technological Educational Institute (T. E. I.) of 
Western Greece, attending the course “Higher Mathematics I” (Calculus and Linear Algebra) 
of their first term of studies and having the same instructor. The students of both groups had 
more or less the same mathematical background from secondary education and were 
chosen in such a way that the grades, which they had obtained in the mathematics exam for 
entrance in higher education, were of about the same level. Also, since they were in their 
first term of studies, they had attended no previous mathematical courses at the T. E. I. of 
Western Greece. 
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The teaching procedure involved four didactic hours (45 minutes each) per week for 
each group. For the experimental group half of these hours were spent in a computer 
laboratory and the rest in the classroom according to the motive of the APOS/ACE 
instruction. On the contrary, for the control group the lectures were performed in the 
traditional way on the board, followed by a number of exercises and problems with the 
students participating for their solutions. 

At the end of the term the students of both groups participated in the same final 
exam and the scores obtained, in a climax from 0 to 100, were the following: 

Experimental Group (G1): 100(2 times), 99(3), 98(5), 95(8), 94(7), 93(1), 92 (6), 90(5), 
89(3), 88(7), 85(13), 82(6), 80(14), 79(8), 78(6), 76(3), 75(3), 74(3), 73(1), 72(5), 70(4), 68(2), 
63(2), 60(3), 59(5), 58(1), 57(2), 56(3), 55(4), 54(2), 53(1), 52(2), 51(2), 50(8), 48(7), 45(8), 
42(1), 40(3), 35(1). 

Control Group (G2): 100(1), 99(2), 98(3), 97(4), 95(9), 92(4), 91(2), 90(3), 88(6), 
85(26), 82(18), 80(29), 78(11), 75(32), 70(17), 64(12), 60(16), 58(19), 56(3), 55(6), 50(17), 
45(9), 40(6).  

The student performance was characterized by the fuzzy linguistic labels (grades) A, 
B, C, D and F corresponding to the above scores as follows: A (85-100) = excellent, B (84-75) 
= very good, C (74-60) = good, D (59-50) = fair and F (<50) = unsatisfactory.  

Next, we assigned to each linguistic label (grade) a TFN (denoted, for simplicity, by 
the same letter) as follows: A= (85, 92.5, 100), B = (75, 79.5, 84), C = (60, 67, 74), D= (50, 
54.5, 59) and F = (0, 24.5, 49). The middle entry of each of the above TFNs is equal to the 
mean value of the student scores attached to the corresponding linguist label (grade). In this 
way a TFN corresponds to each student assessing his (her) individual performance. The 
representation of the linguistic labels A, B, C, D and F by TFNs has the advantage of 
determining numerically the scores corresponding to each label. In fact, the scores assigned 
to the above labels in the present application are not standard, since they may differ from 
case to case in practice. For example, in a more rigorous assessment, one could take  
A(90-100), B (80-89), C(70-79), D (60-69), F(<60), etc. 

We now form the following Table 1 depicting the students’ performance in terms of 
the TFNs defined above: 

Table 1 
Students’ performance in terms of the TFNs 

TFN G1 G2 

A 60 60 

B 40 90 

C 20 45 

D 30 45 

F 20 15 

 Total  170 255 

 
We observe that in Table 1 we have 170 TFNs representing the progress of the 

students of G1 and 255 TFNs representing the progress of the students of G2. Therefore, it is 
logical to accept that the overall performance of each group is given by the corresponding 
mean value of the above TFNs (Definition 11). For simplifying our notation, let us denote the 
above mean values by the letter of the corresponding group. Then, making the necessary 
straightforward calculations, one finds that:  
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 G1 = 
1

170
. (60A+40B+20C+30D+20F)   (63.53, 71.74, 83.47) and 

 G2 = 
1

255
. (60A+90B+45C+45D+15F)   (65.88, 72.63, 79.53).  

Observing the left entries (63.53 and 65.88 respectively) and the right entries (83.47 
and 79.53 respectively) of the TFNs G1 and G2 one concludes that the overall performance of 
the two groups could be characterized from good (C) to very good (B). It is also of worth to 
clarify that the middle entries of G1 and G2 (71.74 and 72.63 respectively) give a rough 
approximation only of each group’s overall performance. In fact, since the middle entries of 
the TFNs A, B, C, D and F were chosen to be equal to the means of the scores assigned to the 
corresponding linguistic grades, the middle entries of the TFNS G1 and G2 are simply equal to 
the mean values of these means and therefore they do not measure the mean 
performances of the two groups. In fact, calculating the means of the student scores in the 
classical way one finds the values 72.44 and 72.04 for G1 and G2 respectively, showing a 
slight superiority of the experimental group. 

Next, applying Proposition 7 one finds that the x-cuts of the two TFNs are  
G1

x = [63.53+8.21x, 83.47-11.73x] and G2
x = [65.88+6.75x, 79.53-6.9x] respectively. But 

63.53+8.21x   65.88+6.75x  1.46x  2.35  x  1.61, which is true, since x is in [0, 1]. 
On the contrary, 83.47-11.73x  79.53-6.9x  3.94 4.83x 0.82 x, which is not true for 
all the values of x. Therefore, according to Definition 3.4, the TFNs G1 and G2 are not 
comparable, which means that in this stage one can not decide which of the two groups 
demonstrated the better performance. 

A good way to overcome this difficulty is to defuzzify the TFNs G1 and G2. In fact, by 
Proposition 8, the COGs of the graphs of the TFNs G1 and G2 have x-coordinates equal to 

X = 
63.53 71.74 83.47

3

 
 72.91 and X’ =

65.88 72.63 79.53

3

 
 72.68 respectively.  

Observe now that these GOGs lie in a rectangle with sides of length 100 units on the 
X-axis (student scores from 0 to 100) and one unit on the Y-axis (normal fuzzy sets). 
Therefore, the nearer the x-coordinate of the COG to 100, the better the corresponding 
group’s performance. Thus, since X > X’, the experimental group G1 demonstrates a (slightly) 
better overall performance than the control group G2. 

Conclusion. In the present paper we used the TFNs for comparing the difference of 
university students’ performance when learning mathematics with the APOS/ACE 
instructional treatment (experimental group), as well as with the traditional way on the 
board (control group). In our case, in contrast to earlier experimental researches of the 
Dubinsky’s team and of other researchers, no significant difference was found for the 
performance of the two groups. In fact, the slight superiority of the experimental group is 
not enough to obtain secure conclusions and therefore a further investigation seems to be 
needed on the subject.  

Since two TFNs are not always comparable, the use of them as assessment tools was 
combined here with the COG defuzzification technique. The creditability of this new fuzzy 
assessment approach was validated by comparing its outcomes in our application with the 
corresponding mean values of the students’ performance, i.e. the most standard assessment 
method of the traditional, bi-valued logic. 

The combination of the TFNs with the COG technique seems to have the potential of 
a general assessment method that could be used in a great variety of other machine (e.g. for 
decision-making [14], case-based reasoning [9], computational thinking [11] etc) and human 
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(e.g. players’ assessment [16], etc) activities. This is indeed the main target of our future 
research on the subject.  
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Анотація. Воскоглой М. Гр. Нечіткі числа як інструмент оцінки APOS/ACE 
методів навчання математики. 

У статті використовується комбінація методів трикутних нечітких чисел 
(TFNs) та центру тяжіння (COG) як техніки дефазифікації для оцінки знань і навичок 
студентів універистету у процесі навчання математики у рамках APOS/ ACE. 

Ключові слова: APOS/ACE методи навчання математики, трикутні нечіткі 
числа (TFNs), центр тяжіння (COG), техніка дефазифікації. 

 
Аннотация. Воскоглой М. Гр. Нечеткие числа в качестве инструмента 

оценки APOS/ACE методов обучения математики. 
В статье используется комбинация методов треугольных нечетких чисел 

(TFNs) и центра тяжести (COG) как техники дефаззификации для оценки навыков и 
знаний студентов университета в процессе обучения математике в рамках APOS/ 
ACE. 

Ключевые слова: APOS/ACE методы обучения математики, треугольные 
нечеткие числа (TFNs), центр тяжести (COG) техника дефаззификации. 

 
Abstract. Voskoglou M. Gr. Fuzzy Numbers as an Assessment Tool in the APOS/ACE 

Instructional Treatment of Mathematics 
In the article a combination is used of of the Triangular Fuzzy Numbers (TFNs) and the 

Center of Gravity (COG) defuzzification technique to assess university student skills for 
learning mathematics with the APOS/ACE instructional treatment. 

Key words: APOS/ACE instructional treatment of mathematics, triangular fuzzy 
numbers (TFNs), center of gravity (COG) defuzzification technique. 
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