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The authors study finite 2-groups with the cyclic center and non-metacyclic non-Dedekind
norm of Abelian non-cyclic subgroups. It is found out that such groups are cyclic or metacyclic
extensions of their norms of Abelian non-cyclic subgroups. Their structure is described.

1. Introduction. In the group theory findings related to the study of properties of groups
with given restrictions on their subgroups and systems of such subgroups are in the focus.
In some cases, the group may have a system of subgroups with certain properties, but the
impact of this system of subgroups is not significant. On the other hand, the presence of one
(usually a characteristic) subgroup with a certain property can be the determining factor for
the structure of the group. Nowadays the list of such subgroups can be significantly broaden
by means of different Σ-norms of a group.

Let us regard that the Σ-norm of a group G is the intersection of normalizers of all
subgroups of a group, included in the system Σ. Obviously, any subgroup which belongs to Σ
(assuming that the system Σ is non-empty) is normal in a group in the case of the coincidence
of the Σ-norm with a group. For the first time groups with this property were considered in
the second part of the XIX century by R. Dedekind, who gave a complete description of finite
groups, all subgroups of which are normal (now they are called Dedekind groups). However,
a systematic study of groups with arbitrary systems of normal subgroups was continued only
in the second part of the XX century that stopped the study of the Σ-norms in a certain
way. Currently the structure of groups, which coincide with their Σ-norms, is known for
many systems Σ of subgroups. So it is naturally to raise the question about the study of the
properties of groups which have proper Σ-norm.

For the first time this problem was posed by R. Baer in 30-s of the previous century (see,
e.g. [1]) for the system Σ of all subgroups of this group. Such Σ-norm was called the norm
of a group and denoted by N(G). It is clear that the norm N(G) is contained in all other
Σ-norms, and those ones can be considered as its generalizations.

The authors continue the study of groups with non-Dedekind Σ-norm, started in [2]–[6]
for systems Σ of all Abelian non-cyclic subgroups of a group G, provided that the system of
such subgroups in a group is non-empty. In [2] such Σ-norm was called the norm of Abelian
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non-cyclic subgroups and denoted by NA
G . If G = NA

G , then all Abelian non-cyclic subgroups
are normal in G. Periodic non-Abelian groups with this property were studied in [7] and
were called HA-groups (or HAp-groups in the case of p-groups).

In [3]–[4] the authors specified infinite locally finite p-groups with non-Dedekind norm of
Abelian non-cyclic subgroups. It was found out that all such groups are finite extensions of
a quasicyclic subgroup and such groups are HAp-groups in the case of p ̸=2 or in the case of
the infinite norm NA

G .
Finite p-groups (p ̸= 2) with non-Dedekind norm of Abelian non-cyclic subgroups were

described in [5]. A complete characterization of finite 2-groups with the non-cyclic center
and non-Dedekind norm of Abelian non-cyclic subgroups was given in [6].

The purpose of this paper is to study finite 2-groups with the cyclic center and non-
metacyclic non-Dedekind norm NA

G of Abelian non-cyclic subgroups. It is found out that such
groups are cyclic or metacyclic extensions of their norms of Abelian non-cyclic subgroups
and their structure is described.

This article uses the following notations:

• E the indentity subgroup;

• Z(G) the center of a group G;

• G′ the derived subgroup of a group G;

• AhB the semidirect product of subgroups A and B;

• ωm(G) the subgroup, which is generated by all elements, which order does not exceed
2m, of a group G. In particular, ω1(G)=ω(G) is the lower layer of a group G. It is the
subgroup which is generated by all elements of order 2 of a group G.

2. Preliminary results. The next statement is actively used in the further research.

Proposition 1 (Theorem 1 [7])). Every finite non-metacyclic non-Hamiltonian HA2-group
is a group of one of the following types:

1. G = (⟨a⟩ × ⟨b⟩) h ⟨c⟩, where |a| = 2n, n ≥ 2, |b| = |c| = 2, [a, b] = [a, c] = 1, [b, c] =
a2

n−1 ;

2. G = (H × ⟨b⟩)h ⟨c⟩, where H = ⟨h1, h2⟩, |h1| = |h2| = 4, h2
1 = h2

2 = [h1, h2], |b| = |c| =
2, [H, ⟨b⟩] = [H, ⟨c⟩] = E, [b, c] = h2

1;

3. G = (⟨a⟩ × ⟨b⟩) ⟨c⟩, where |a| = |b| = |c| = 4, c2 = a2b2, [c, b] = c2, [c, a] = a2;

4. G = (⟨a⟩ × ⟨b⟩) ⟨c⟩ ⟨d⟩, where |a| = |b| = |c| = |d| = 4, c2 = d2 = a2b2, [a, c] = [d, c] =
a2, [b, d] = b2, [c, b] = [d, a] = c2;

5. G = H × ⟨c⟩, where H is a quaternion group, |c| = 2n, n ≥ 2;

6. G = H ×Q, where H and Q are quaternion groups;

7. G = (H × ⟨b⟩) ⟨c⟩, where H = ⟨h1, h2⟩, |h1| = |h2| = |b| = |c| = 4, h2
1 = h2

2 = [h1, h2],
c2 = b2h2

1, [b, c] = b2, [H, ⟨b⟩] = [H, ⟨c⟩] = E;

8. G = ⟨c⟩ h H, where H = ⟨h1, h2⟩ ,|h1| = |h2| = 4, h2
1 = h2

2 = [h1, h2], |c| = 2n > 2,
[c, h1] = c2

n−1 , [c, h2] = 1;

9. G = (H × ⟨a⟩) ⟨b⟩, where H = ⟨h1, h2⟩, |h1| = |h2| = 4, |a| = 2, |b| = 8, h2
1 = h2

2 =
[h1, h2] = [a, b], b2 = h1,[h2, b] = a.

The following result directly follows from Proposition 1.
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Corollary 1. Let G be a finite 2-group with the cyclic center and non-metacyclic non-
Dedekind norm NA

G of Abelian non-cyclic subgroups. If G = NA
G , then G is a group of one

of the types (1), (2), (9) of Proposition 1.

Lemma 1 ([5]). Let G be a locally finite 2-group with non-Dedekind norm NA
G of Abelian

non-cyclic subgroup. If the center Z(NA
G ) is cyclic, then the central involution a is in every

cyclic subgroup of composite order of a group G.

Lemma 2. If the norm NA
G of Abelian non-cyclic subgroups of a finite 2-group G is non-

Dedekind and its lower layer ω(NA
G ) is an elementary Abelian subgroup of order 4, then NA

G

contains all involutions of a group G and ω(NA
G ) = ω(G).

Proof. Let a group G and its norm NA
G of Abelian non-cyclic subgroups satisfy the conditions

of the lemma. Then NA
G is a group of one of the types (3)–(9) of Proposition 1. By the

condition ω(NA
G ) ▹ NA

G and the fact, that the subgroup ω(NA
G ) is characteristic in NA

G , we
have ω(NA

G ) ▹ G and ω(NA
G ) ∩ Z(G) ̸= E. Let ω(NA

G ) = ⟨a1⟩ × ⟨a2⟩, where |a1| = |a2| = 2,
a1 ∈ Z (G) for the definiteness.

Suppose that G contains an involution x /∈ NA
G . Then the subgroup ⟨a1, x⟩ is Abelian and

normal in the group G1 = ⟨x⟩NA
G . Since [G1 : CG1(⟨a1, x⟩)] ≤ 2, [y2, x] = 1 for any element

y ∈ NA
G . If NA

G is a group of one of the types (3)–(8) of the Proposition, then[(
NA

G

)2
, ⟨x⟩

]
=

[
ω
(
NA

G

)
, ⟨x⟩

]
= E.

It follows that ⟨x⟩ ▹ G1 as the intersection of normal subgroups ⟨a1, x⟩ and ⟨a2, x⟩. Hence
G1 = ⟨x⟩ × NA

G is a non-Hamiltonian HA2-group, which contains an elementary Abelian
subgroup of order 8. But it contradicts to Lemma 2 ([7]). Therefore in this case ω(NA

G ) =
ω(G).

Suppose that NA
G is a group of the type (9) of the proposition. Then Z(NA

G ) = ⟨h2
1⟩, where

h1 ∈ H, |h1| = 4 and h2
1 = a1 ∈ Z(G). As it is shown above

[
⟨x⟩ , NA

G

]
⊆ ⟨a1⟩ = ⟨h2

1⟩ for the
involution x /∈ NA

G . Hence [x, b2] = [x, h1] = 1. If [x, h2] = 1, then ⟨x, h2⟩ ∩NA
G = ⟨h2⟩ ▹ NA

G ,
which is impossible. Thus [x, h2] = h2

1 and |xh2| = 2. Since

xh2 /∈ NA
G , [xh2, b] ∈

⟨
h2
1

⟩
,
[
xh2, b

2
]
= [xh2, h1] = 1.

On the other hand, [xh2, h1] = [h2, h1] = h2
1 ̸= 1, which contradicts to the proved above.

Thus ω(NA
G ) = ω(G). Lemma is proved.

Corollary 2. If the norm NA
G of Abelian non-cyclic subgroups of a finite 2-group G is

non-Dedekind and has the non-cyclic center Z(NA
G ), then ω(NA

G ) = ω(G).

Lemma 3. If the norm NA
G of Abelian non-cyclic subgroups of a finite 2-group G is non-

Dedekind, has the non-cyclic center and the non-central lower layer ω(NA
G ) in G, then G =

C ⟨y⟩, where C = CG

(
ω(NA

G

)
), C ▹ G, |y| > 4, y2 ∈ C. In this case, every Abelian non-cyclic

subgroup of a group G is contained in C and NA
G = NA

C ⊆ C.

Proof. By the assymptions of the lemma the norm NA
G is a group of one of the types (3)–(8)

of Proposition. In each of these cases ω(NA
G ) is an elementary Abelian subgroup of order 4

and ω(NA
G ) ̸⊂ Z(G) according to the hypothesis of the lemma.

Let’s denote C = CG

(
ω(NA

G )
)
. Since ω(NA

G ) ▹ G,C ▹ G, [G : C] = 2. Thus G = C ⟨y⟩,
where y2 ∈ C.
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Since ω(NA
G ) ⊆ Z(NA

G ), NA
G ⊆ C and y /∈ NA

G . According to Lemma 2 ω(NA
G ) = ω(G),

so |y| > 2. Let |y| = 4, then the subgroup ⟨y⟩ω(G) is a dihedral group of order 8. Since
⟨y⟩ω (G) = ⟨y, b⟩, |yb| = 2. But yb ∈ ω (G) and y ∈ ω (G) by such conditions, which
is impossible. Thus |y| > 4. Taking into account that every Abelian non-cyclic subgroup
contains ω(NA

G ), we conclude that it is contained in C. Therefore NA
G = NA

C ⊆ C.

Lemma 4. Let G be a finite 2-group with non-Dedekind norm NA
G of Abelian non-cyclic

subgroups, which is a group of one of the types (3)–(7) of the proposition. Then the center
Z(G) of a group G is non-cyclic.

Proof. Let NA
G be a group of one of the types which noted in the assumptions of the lemma.

Then the center Z(NA
G ) of the norm NA

G is non-cyclic. If the norm NA
G is a group of the type

(5) of the proposition, then ω(NA
G ) ⊆ Z(G) and a group G has the non-cyclic center.

So we will assume that NA
G is a group of one of the types (3)–(4) or (6)–(7). In each of

these cases ω(NA
G ) is an elementary Abelian subgroup of order 4. Since ω(NA

G ) ⊆ Z(NA
G ),

ω(NA
G ) = ω(G) according to Lemma 2.

Suppose ω(NA
G ) ̸⊂ Z(G) contrary to the assertion of the lemma. Then ω(NA

G )∩Z(G) ̸= E
by the condition ω(NA

G ) ▹G. Let ω(NA
G ) = ⟨a1⟩ × ⟨a2⟩, |a1| = |a2| = 2, where a1 ∈ Z(G) and

a2 /∈ Z(G).
Let us denote C = CG

(
ω(NA

G )
)
, G = C · ⟨y⟩, |y| > 4, y2 ∈ C by Lemma 3, C contains

all Abelian non-cyclic subgroups of G, NA
G ⊆ NA

C and NA
G = NA

C . Since the norm NA
C is non-

metacyclic and Z(C) is non-cyclic, C is either non-metacyclic non-Dedekind HA2-group by
Theorem 12 ([6]) and C = NA

C = NA
G , or C = H · Q is a product of a quaternion group

H = ⟨h1, h2⟩ of order 8 and a generalized quaternion group Q = ⟨t, q⟩, |t| = 2k > 8,
t2

k−1
= q2, q−1tq = t−1, [H,Q] ⊆ ω(C) and NA

C = NA
G = ⟨t2k−2⟩ ×H.

In the previous case NA
G is a group of the type (5) of Proposition 1 and it is easy to prove

that the center Z (G) of a group is non-cyclic.
Thus we will assume that C = NA

G and G = NA
G · ⟨y⟩, where y2 ∈ NA

G . In this case NA
G

is a non-Dedekind HA2-group of exponent 4. So |y| = 8, y4 = a1 ∈ Z(G) by Lemma 3. It is
also easy to prove that the norm NA

G contains all elements of order 4 of a group G.
Let us consider the quotient-group G = G/ω(G) ∼= NA

G · ⟨y⟩, y2 ∈ NA
G , where |y| = 4.

Since ω
(
G
)
= NA

G ▹ G, |NA
G | ≥ 8 and y induces an automorphism of order 2 on ω(G), there

is an involution z such that ⟨y⟩ ∩ ⟨z⟩ = E and [z, y] = 1 in ω(G). Turning to the preimages,
we have [z, y] = a, where a ∈ ω(G). Since [z2, y] = 1, we conclude that z2 = a1. Let a ∈ ⟨a1⟩,
then [z, y2] = 1 and |y2z| = 2. But in this case y2 ∈ ⟨z⟩ω(G) and the intersection ⟨y⟩∩ ⟨z⟩ is
non-identity in the quotient-group G. It is a contradiction. Thus a /∈ ⟨a1⟩ and we can assume
without loss of generality that a = a2. Then y−1zy = za2, [z, y2] = z2 = a1, and ⟨y2, z⟩ is
a quaternion group, that is impossible if the norm NA

G is a group of the type (3) or (4) of
Proposition 1.

Let NA
G contains a quaternion group, i.e. NA

G is a group of the type (4) or (7) of the
proposition. Then G = H · Q is a direct or a semidirect product of two quaternion groups
H and Q, [H,Q] ⊆ Q2.

Let us consider the group G = NA
G ·⟨y⟩, where y2 ∈ NA

G . So ⟨y2, a2⟩ is Abelian non-cyclic by
the inclusion ω(NA

G) ⊆ Z(NA
G ) and therefore ⟨y2, a2⟩ is a normal subgroup in G. The subgroup

ÑA
G is an elementary Abelian of order 8 in the quotient-group G̃ = G/ ⟨y2, a2⟩ ∼= ÑA

G h ⟨ỹ⟩.
Since ỹ induces an automorphism of order 2 on ÑA

G , it is always possible to point involutions
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z̃1, z̃2 ∈ ÑA
G , which are permutable with ỹ. Turning to preimages we get that [zi, y] = y2miasi ,

i = 1, 2.
If s1 = s2 = 1, then [z1z2, y] = y2t. If (t, 2) = 1, then |yz1z2| ≤ 4 and y ∈ NA

G by
the proved, which is impossible. Thus t = 2t1 and [z1z2, y] = y4t1 ∈ Z(G). But [z1z2, y

2] =[
(z1z2)

2, y
]
= 1 by such conditions. From the second part of the equality we have (z1z2)

2 =
a1 = y4 and |z1z2y2| = 2, which contradicts to the structure of the norm NA

G .
Thus we can assume that at least one of numbers si = 0. But then [zi, y] = y2mi and

we again get the contradiction repeating the above argument. In this case G = C and
ω
(
NA

G

)
⊆ Z(G).

A group, which has the norm NA
G of one of the types (3)–(7) of the proposition, has

the non-cyclic center by Lemma 4. Such groups were studied in [6]. So it remains to study
the groups, in which the norm NA

G is a group of one of the types (1), (2), (8)–(9) of the
proposition.

The following example illustrates that in the case, when the norm NA
G is a group of the

type (8) of Proposition 1, the center Z (G) of a group can be cyclic.

Example. G = (⟨b⟩hH) ⟨y⟩, where |b| = 4, H = ⟨h1, h2⟩, |h1| = 4, [h1, h2] = h2
1 = h2

2,
[b, h2] = 1, y2 = h1, [y, h2] = b2h2

1, [y, b] = h2.
In this group all Abelian non-cyclic subgroups are contained in the group (⟨b⟩hH) and

are normal in it, so it is easy to verify that NA
G = (⟨b⟩hH). Thus Z (G) = ⟨h2

1⟩ is cyclic.

Lemma 5. Let G be a finite 2-group, the norm NA
G of Abelian non-cyclic subgroups of which

is a group of the type (9) of Proposition 1. Then all Abelian non-cyclic subgroups are normal
in G and G = NA

G .

Proof. Let NA
G is a group of the type (9) of Proposition 1, i.e. NA

G = (H × ⟨a⟩) ⟨b⟩, where
H = ⟨h1, h2⟩, |h1| = |h2| = 4, |a| = 2, |b| = 8, b2 = h1, [h2, b ] = a, [a, b] = [h1, h2] = h2

1 =
h2
2. In particular, ω

(
NA

G

)
= ⟨h2

1, a⟩ and Z
(
NA

G

)
= ⟨h2

1⟩ ⊂ Z(G).
NA

G contains all elements of order 2 of a group G by Lemma 2 and ω
(
NA

G

)
= ω (G).

Let’s denote C = CG (ω(G)). Then [G : C] = 2 and G = C ⟨b⟩, b2 ∈ C. By the proved
above, the lower layer ω

(
NA

G

)
contains all involutions of the centralizer C, so the quotient-

group C = C/ ⟨a⟩ contains only one involution by Lemma 1. Since C is non-Abelian, C is a
quaternion 2-group:

C ∼= Q = ⟨x, y⟩ , |x| = 2n ≥ 4, |y| = 4, x2n−1

= y2, y−1xy = x−1.

Turning to the preimages and taking into account Lemma 2, we have that x2n−1
= y2 =

h2
1, y

−1xy = x−1am, m ∈ {0, 1}. If m = 1, then y−1xy = x−1a and (xy)2 = h2
1a /∈ ⟨h2

1⟩, which
is impossible. Therefore m = 0, y−1xy = x−1 and C = Q×⟨a⟩ . We can assume without loss
of generality, that H ⊆ Q, h1 ∈ ⟨x⟩ , ⟨h2⟩ = ⟨y⟩. If |Q| > 8, then h2 /∈ NG (⟨a, xh2⟩), which
is impossible, because h2 ∈ NA

G . Thus Q = H, C = H × ⟨a⟩ ⊂ NA
G and G = C⟨b⟩ = NA

G .

Lemma 6. If a finite 2-group G has the norm NA
G of Abelian non-cyclic subgroups, which

is a group of the type (2) of Proposition 1, then G = NA
G .

Proof. Let a group G and its norm NA
G satisfy the conditions of the lemma, NA

G = (H × ⟨b⟩)h
⟨c⟩, where H = ⟨h1, h2⟩, |h1| = |h2| = 4, [h1, h2] = h2

1 = h2
2, |b| = |c| = 2, [H, ⟨b⟩] = [H, ⟨c⟩] =

E, [b, c] = h2
1.
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Suppose that G ̸= NA
G and let us prove that NA

G contains all involutions of a group G.
Indeed, otherwise we have ⟨z, h2

1⟩ ▹ G1 = ⟨z⟩NA
G for any involution z ∈ G\NA

G . Therefore
[G1 : CG1 (⟨z, h2

1⟩)] ≤ 2 and G1\ ⟨h2
1⟩ contains an involution y ̸= h2

1, which is permutable with
z. So it follows ⟨y, z⟩ ∩NA

G = ⟨y⟩ ▹NA
G , which is impossible. Hence all involutions of a group

G are contained in NA
G .

Suppose that an element x of order 4 exists in G\NA
G . By Lemma 1 x2 = h2

1. Thus
any element a of order 4 of the norm NA

G is not permutable with x, otherwise |ax|=2 and
x ∈ NA

G by the proved above. Let’s denote G2 = ⟨x⟩NA
G and consider the quotient-group G2 =

G2/ ⟨h2
1⟩. Since NA

G is an elementary Abelian group of order 16, normal in G2 and x induces
an automorphism of order 2 on NA

G , there exist involutions y1, y2 ∈ NA
G , ⟨y1⟩ ∩ ⟨y2⟩ = E,

which are permutable with x. Turning to the preimages we will have [x, yi] ∈ ⟨h2
1⟩ , i = 1, 2.

It is easy to prove that the group ⟨y1, y2⟩ contains an involution y ̸= h2
1, which is permutable

with x. Then ⟨x, y⟩ ▹G2 as an Abelian non-cyclic subgroup and G′
2 ⊆ ⟨x, y⟩ ∩NA

G = ⟨y, h2
1⟩.

Let t be an arbitrary non-central involution of NA
G , which differs from y. Let us put

[x, t] = ymh2k
1 , m, k ∈ {0, 1}. Then [x, t2] = h2m

1 . On the other hand, [x, t2] = 1, therefore
m = 0 and

[
⟨x⟩ , NA

G

]
⊆ ⟨h2

1⟩. However in this case the group G2 will contain an involution,
which does not belong to NA

G , that contradicts to the proved above. Therefore NA
G contains

all elements of order 4 of a group G.
According to the assumption G ̸= NA

G, we conclude that there is an element x ∈ G\NA
G ,

|x| = 8. Since x2 ∈ NA
G , |x2| = 4 and all cyclic subgroups of order 4 are normal in NA

G ,
⟨x2⟩ ▹ G3 = ⟨x⟩NA

G. Let us consider the quotient-group G3 = G2/ ⟨x2⟩. Since NA
G is a normal

elementary Abelian group of order 8 and x induces an automorphism of order 2 on it, there
exist involutions y1, y2 ∈ NA

G , ⟨y1⟩ ∩ ⟨y2⟩ = E, which are permutable with x. Turning to
the preimages we get [x, yi] ∈ ⟨x2⟩ , i = 1, 2. It is easy to verify that [x, yi] ∈ ⟨h2

1⟩ and the
group ⟨x2, y1, y2⟩ contains an involution y, which is permutable with x. Then ⟨x, y⟩ ▹G3 as
Abelian non-cyclic subgroup and G′

3 ⊆ ⟨x, y⟩ ∩NA
G = ⟨y, x2⟩.

Let [x, t] = x2myk, where t is an arbitrary non-central involution of NA
G , which differs

from y. Since NA
G contains all elements of order 4, [x, t] ∈ ⟨h2

1⟩ by the condition [x, t2] = 1.
But then [x2, t] = 1 and x2 ∈ Z(G3), that is impossible, because the norm NA

G does not
contain non-central elements of order 4. This contradiction proves that G = NA

G.

3. The main results.

Theorem 1. Finite 2-groups with non-metacyclic non-Dedekind norm NA
G of Abelian non-

cyclic subgroups and the cyclic center are groups of the following types:

1. G is a non-metacyclic non-Hamiltonian HA2-group with a cyclic center, G = NA
G ;

2. G = (⟨x⟩h ⟨b⟩) h ⟨c⟩ , |x| = 2n, n > 3, |b| = |c| = 2, [x, c] = x±2n−2
b, [b, c] = [x, b] =

x2n−1 , NA
G = (⟨x2⟩ × ⟨b⟩)h ⟨c⟩;

3. G = (⟨x⟩ × ⟨b⟩) h ⟨c⟩ h ⟨d⟩ , |x| = 2n, n > 2, |b| = |c| = |d| = 2, [x, c] = [x, b] =
1, [b, c] = [c, d] = [b, d] = x2n−1

, d−1xd = x−1, NA
G = (⟨x2n−2⟩ × ⟨b⟩)h ⟨c⟩;

4. G = (⟨c⟩hH) ⟨y⟩,H = ⟨h1, h2⟩ , |h1| = |h2| = 4, h2
1 = h2

2 = [h1, h2],|c| = 4, [c, h1] = c2,
[c, h2] = 1, y2 = h1, [y, h2] = c2h2

1, [y, c] = h±1
2 , NA

G = ⟨c⟩hH.

Proof. Let a group G and its norm of Abelian non-cyclic subgroups satisfy the conditions
of Theorem. If G = NA

G, then according to Corollary 1 G is a group of the type (1) of



26 F. M. LYMAN, T. D. LUKASHOVA, M. G. DRUSHLYAK

Theorem 1. Therefore we will assume that G ̸= NA
G. Since G has the cyclic center and non-

Dedekind norm NA
G , the norm NA

G is a group of one of the types (1) or (8) of Proposition 1
by Lemmas 4–6.

We will continue the proof of Theorem 1 in the following lemmas.

Lemma 7. If a finite 2-group G has a non-Dedekind norm NA
G ̸= G, which is a group of the

type (1) of Proposition, then G is a group of one of the types (2) or (3) of Theorem 1.

Proof. Let G ̸= NA
G and NA

G = (⟨a⟩ × ⟨b⟩)h ⟨c⟩, where |a| = 2n, n ≥ 2, |b| = |c| = 2, [a, c] =

[a, b] = 1, [b, c] = a2
n−1 . Since NA

G ▹ G, the intersection NA
G ∩ Z(G) ̸= E in the quotient-

group G = G/ ⟨a⟩. We can assume without loss of generality that b ∈ Z(G). Then ⟨a, b⟩ ▹
G, ω (⟨a, b⟩) = ⟨a2n−1

, b⟩ ▹ G.

Let us denote C = CG(⟨a2
n−1

, b⟩). Then C ▹ G, [G : C] = 2 and G = C h ⟨c⟩, where
b ∈ NA

G , |c| = 2. By Lemma 1 the quotient-group C = C/ ⟨a⟩ has only one involution and
C is a cyclic group or a generalized quaternion group.

Let C be cyclic, then its full preimage C = ⟨x⟩×⟨b⟩ is Abelian and [x, c] ∈ C∩NA
G = ⟨a, b⟩.

Let’s put [x, c] = ambk. If |[x, c]| = 2, then G′ ⊂ ⟨a2⟩ and G is a HA2-group contrary to the
assumption. Thus |[x, c]| > 2. If |a| = 4, then [x, c] = a±1b by the condition [x, c2] = 1, so
(xc)2 ∈ Z(G) and |x| ≤ 8. So x2 = a

±1
b. However, c /∈ NG (⟨a2⟩ × ⟨xbc⟩) by such conditions,

i.e. c /∈ NA
G , which is impossible.

Let |a| > 4, then m = 2n−2m1, where (m1, 2) = 1, (k, 2) = 1. Thus [x, c] = a±2n−2
b,

(xc)2 = x2a±2n−2
b and (xc)2 ∈ Z(G). Since Z (G) = ⟨a⟩ , |x| > |a|, we can consider that

(xc)2 = a. Let’s denote xc = y. Then |y| = 2n+1, [y, b] = y2
n
, [y, c] = y±2n−1

b and G =
(⟨y⟩h ⟨b⟩)h ⟨c⟩ is a group of the type (2) of Theorem 1.

Let C be a generalized quaternion group C =
⟨
h1, h2

⟩
, where

∣∣h1

∣∣ = 2n, n ≥ 2,
∣∣h2

∣∣ = 4,

h1
2n−1

= h2
2, h2

−1
h1h2 = h1

−1. Let h1 and h2 denote the preimages of elements h1 and h2

respectively. Since the center Z(G) is cyclic, then h2n−1

1 = h2
2 = a2

n−1 , h−1
2 h1h2 = h−1

1 bm,
m ∈ {0, 1} by Lemma 1. If m ̸= 0, then (h1h2)

2 = h2
2b=a2

n−1
b, which contradicts to Lemma 1.

Thus m = 0, C = H × ⟨b⟩ , H = ⟨h1, h2⟩ is a generalized quaternion group. We also note
that ⟨a⟩ ⊆ ⟨h1⟩ by the condition ⟨a⟩ ▹ G.

Since [h2, c] ∈ ⟨h2, b⟩∩⟨b, c⟩ = ⟨a2n−1
, b⟩ and [h2, c

2] = 1, we conclude that [h2, c] ∈ ⟨a2n−1⟩.
Then one of the elements h2c or h2bc will be of order 2, and hence one of the subgroups
⟨h2c, a2

n−1⟩ or ⟨h2bc, a2
n−1⟩ is elementary Abelian. Since ⟨a⟩ ⊆ NA

G , the element a has to
normalize these subgroups, which is possible only if |a| = 4.

Based on the fact that ⟨h1h2⟩×⟨b⟩ is an Abelian non-cyclic subgroup, we have [h1h2, c] ∈
(⟨h1h2⟩ × ⟨b⟩) ∩ NA

G = ⟨a2, b⟩. It is easy to prove that [h1h2, c] ∈ ⟨a2⟩ by Lemma 1. It also
follows that [h1, c] ∈ ⟨a2⟩. Thus

[
H, NA

G

]
= ⟨a2⟩.

Let’s denote B = ⟨b, c⟩. Since B is a 2-generated non-Abelian subgroup and the com-
mutant [B,G] ⊆ ⟨a2⟩ is of order 2, G = BCG(B) by [9]. We can assume without loss of
generality that H = CG(B). If |H| = 8, then G is a HA2-group, which contradicts to the
assumption. So |H| > 8 and G is a group of the type (3) of Theorem 1.

Lemma 8. If a finite 2-group G has the norm NA
G ̸= G which is a group of the type (8) of

Proposition, then G is a group of the type (4) of Theorem 1.

Proof. Let NA
G be a group of the type (8) of Proposition: NA

G = ⟨c⟩hH, where H = ⟨h1, h2⟩,
|h1| = |h2| = 4, h2

1 = h2
2 = [h1, h2], |c| = 2n > 2, [c, h1] = c2

n−1 , [c, h2] = 1.
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Suppose that NA
G ̸= G. Since ω

(
NA

G

)
⊂ Z

(
NA

G

)
and ω

(
NA

G

)
̸⊂ Z (G), ω (G) = ω

(
NA

G

)
,

G = C ⟨y⟩, where C = CG

(
ω
(
NA

G

))
▹ G, y2 ∈ C, |y| > 4 by Lemmas 2 and 3. The group

C contains all Abelian non-cyclic subgroups of a group G, so NA
G ⊆ NA

C ⊆ C. Thus C is
a 2-group which has a norm of Abelian non-cyclic subgroups of the type (8) of Proposition
and a non-cyclic center. We conclude that C is a HA2-group and C = NA

G = ⟨c⟩hH by the
results of [6]. Thus G = C ⟨y⟩ = (⟨c⟩hH) ⟨y⟩, |y| > 4, y2 ∈ C.

Let |y| = 2k. Since y /∈ C, ω (G)∩⟨y⟩ ⊆ Z(G). Let’s denote ⟨a1⟩ = ω (G)∩⟨y⟩ and consider
the quotient-group G = G/ω (G) ∼= C ⟨y⟩. Since the lower layer ω

(
C
)

is an elementary
Abelian subgroup of order 8 and ω

(
C
)
▹ G, we conclude that ω

(
C
)

contains an involution
z such that [z, y] = 1, ⟨z⟩ ∩ ⟨y⟩ = E. Turning to the preimages we put [z, y] = a, where
|a| = 4, a ∈ ω (G). Then [z2, y] = 1 and z2 = a1 ∈ Z (G). If a ∈ Z (G), then [z, y2] = 1,
|y2k−2

z| = 2, which is impossible, because the elements of the order 4 of NA
G do not have

such property. Thus a /∈ Z (G) and [z, y2] = a1. It follows that ⟨z, y2⟩ is a quaternion group
and |y| = 8.

If |c| > 4, then a1 = c2
n−1 ∈ Z (G) and c2

n−1 ∈ ⟨z, y2⟩. But any quaternion group in NA
G

does not contain c2
n−1 . This means that |c| = 4, c2 /∈ Z (G) and a1 = h2

1 ∈ ⟨z, y2⟩. Taking into
account the structure of the quaternion subgroups in NA

G , we have ⟨z, y2⟩ =
⟨
h2c

2m, h1h
l
2c

s
⟩
.

Suppose that ⟨y2⟩ ▹ G. Then we can assume that y2 = h2c
2m, z = h1h

l
2c

s. Let’s consider
the quotient-group

Ǧ = G/
⟨
y2
⟩ ∼=

(
⟨č⟩h

⟨
ȟ1

⟩)
h ⟨y̌⟩ .

Since ⟨č⟩ is a characteristic subgroup in ŇA
G , ⟨č⟩▹Ǧ and [č, y̌] ∈ ⟨č2⟩. Turning to the preimages

we have [c, y] = c2ry2i. So [c2, y] = h2i
2 ̸= 1 and i ≡ 1 (mod 2). It is easy to verify that in this

case |cy| ≤ 4, which contradicts to the proved.
Thus ⟨y2⟩ ▹̸ G. Then we can assume that y2 = h1h

l
2c

s and z = h2c
2m respectively. Let’s

consider the quotient-group

G = G/ω(G) ∼=
(
⟨c⟩ ×

⟨
h1

⟩
×
⟨
h2

⟩)
⟨y⟩ .

Without loss of generality ⟨y⟩ ∩N
A

G =
⟨
h1

⟩
and z = h2. Then [y, z] =

[
y, h2

]
= 1 according

to the choice of z. We get [⟨y⟩, NA

G] ⊆ N
A

G ∩
⟨
y, h2

⟩
=

⟨
y2, h2

⟩
= H by the condition⟨

y, h2

⟩
▹ G. Thus [y, h2] = c2lh2s

1 and [y, c] = c2l1hm
1 h

r

2. We have l ̸≡ 0 (mod 2) by the first
equality and the condition [y, c2] ̸= 1. We have m ≡ 0 (mod 2) and r ̸≡ 0 (mod 2) by the
second equality and the condition [y, c2] ̸= 1. Thus [y, h2] = c2h2s

1 and [y, c] = c2lh
±1
2 . Further

l1 ≡ s (mod 2), because [y2, c] = c2.
We can assume without loss of generality that G is a group of the type G = C ⟨y⟩ =

(⟨c⟩hH) ⟨y⟩ , where

H = ⟨h1, h2⟩ , |h1| = |h2| = 4, h2
1 = h2

2 = [h1, h2] , |c| = 4,

[c, h1] = c2, [c, h2] = 1, y2 = h1, [y, h2] = c2h2
1, [y, c] = h±1

2 .

In this group all Abelian non-cyclic subgroups are contained in ⟨c⟩hH and normalized by
this subgroup. At the same time y /∈ NA

G, because y /∈ NG (⟨c, h2
1⟩).

Corollary 3. Every finite 2-group G with the cyclic center and non-Dedekind non-metacyclic
norm NA

G is a cyclic or metacyclic extension of this norm.
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